DEMF-Net: A dual encoder multi-scale feature fusion network for polyp segmentation

被引:6
作者
Cao, Xiaorui [1 ]
Yu, He [1 ,2 ]
Yan, Kang [1 ]
Cui, Rong [1 ]
Guo, Jinming [1 ]
Li, Xuan [1 ]
Xing, Xiaoxue [1 ,2 ,3 ]
Huang, Tao [4 ]
机构
[1] Changchun Univ, Coll Elect & Informat Engn, Changchun 130022, Peoples R China
[2] Changchun Univ, Key Lab Intelligent Rehabil & Barrier Free Disable, Minist Educ, Changchun 130022, Peoples R China
[3] Changchun Univ, Jilin Prov Key Lab Human Hlth Status Identificat &, Changchun 130022, Peoples R China
[4] James Cook Univ, Coll Sci & Engn, Cairns, Qld 4870, Australia
关键词
Polyp segmentation; Feature fusion; Swin Transformer; Medical image segmentation; VALIDATION; DIAGNOSIS;
D O I
10.1016/j.bspc.2024.106487
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Colorectal cancer is a common malignant tumour of the gastrointestinal tract. Studies have shown that colonoscopy can be an effective screening method for detecting colon polyps and removing them to prevent the development of colorectal cancer. In this study, we propose a new approach called the Dual Encoder Multi-Scale Feature Fusion Network (DEMF-Net). This approach uses a dual-scale Swin Transformer and CNN as an encoder to extract semantic features at different scales. In order to enhance the marginal characteristics of irregular polyps and improve the polyp detection rate, we propose a Dual-Branch Attention Fusion Module (DAF) that captures different shapes of target features through the attention mechanism and assigns higher weights to feature channels with high contributions. Additionally, we use an Advanced Feature Fusion Module (AFFM) to establish long-range dependencies and strengthen the target region to ensure that the high-level semantic features of polyps are not lost. We also propose Characterization Supplementary Blocks (CSB) for colorectal polyp images with irregular shapes and unclear boundaries to capture the structure and details of images and enhance model accuracy. We conducted experiments on five widely adopted polyp datasets and showed that our method achieved superior results in terms of both segmentation accuracy and edge details.
引用
收藏
页数:13
相关论文
共 75 条
[1]   Medical image registration using unsupervised deep neural network: A scoping literature review [J].
Abbasi, Samaneh ;
Tavakoli, Meysam ;
Boveiri, Hamid Reza ;
Shirazi, Mohammad Amin Mosleh ;
Khayami, Raouf ;
Khorasani, Hedieh ;
Javidan, Reza ;
Mehdizadeh, Alireza .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 73
[2]  
Akbari M, 2018, IEEE ENG MED BIO, P69, DOI 10.1109/EMBC.2018.8512197
[3]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[4]   Comparative Validation of Polyp Detection Methods in Video Colonoscopy: Results From the MICCAI 2015 Endoscopic Vision Challenge [J].
Bernal, Jorge ;
Tajkbaksh, Nima ;
Sanchez, Francisco Javier ;
Matuszewski, Bogdan J. ;
Chen, Hao ;
Yu, Lequan ;
Angermann, Quentin ;
Romain, Olivier ;
Rustad, Bjorn ;
Balasingham, Ilangko ;
Pogorelov, Konstantin ;
Choi, Sungbin ;
Debard, Quentin ;
Maier-Hein, Lena ;
Speidel, Stefanie ;
Stoyanov, Danail ;
Brandao, Patrick ;
Cordova, Henry ;
Sanchez-Montes, Cristina ;
Gurudu, Suryakanth R. ;
Fernandez-Esparrach, Gloria ;
Dray, Xavier ;
Liang, Jianming ;
Histace, Aymeric .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (06) :1231-1249
[5]   WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians [J].
Bernal, Jorge ;
Javier Sanchez, F. ;
Fernandez-Esparrach, Gloria ;
Gil, Debora ;
Rodriguez, Cristina ;
Vilarino, Fernando .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2015, 43 :99-111
[6]   Fully Convolutional Neural Networks for Polyp Segmentation in Colonoscopy [J].
Brandao, Patrick ;
Mazomenos, Evangelos ;
Ciuti, Gastone ;
Calio, Renato ;
Bianchi, Federico ;
Menciassi, Arianna ;
Dario, Paolo ;
Koulaouzidis, Anastasios ;
Arezzo, Alberto ;
Stoyanov, Danail .
MEDICAL IMAGING 2017: COMPUTER-AIDED DIAGNOSIS, 2017, 10134
[7]  
Cao Hu, 2023, Computer Vision - ECCV 2022 Workshops: Proceedings. Lecture Notes in Computer Science (13803), P205, DOI 10.1007/978-3-031-25066-8_9
[8]   CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification [J].
Chen, Chun-Fu ;
Fan, Quanfu ;
Panda, Rameswar .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :347-356
[9]  
Chen J., 2021, arXiv
[10]   A statistical approach for robust polyp detection in CT colonography [J].
Chowdhury, Tarik A. ;
Ghita, Ovidiu ;
Whelan, Paul F. .
2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, :2523-2526