Detection of Protein Content in Alfalfa Using Visible/ Near-Infrared Spectroscopy Technology

被引:0
|
作者
Li, Jie [1 ]
Wu, Guifang [1 ]
Guo, Fang [1 ]
Han, Lei [1 ]
Xiao, Haowen [2 ]
Cao, Yang [2 ]
Yang, Huihe [1 ]
Yan, Shubin [1 ]
机构
[1] Inner Mongolia Agr Univ, Coll Mech & Elect Engn, Hohhot 010018, Peoples R China
[2] Inner Mongolia Autonomous Reg Agr & Pastoral Techn, Hohhot 010010, Peoples R China
来源
BIORESOURCES | 2024年 / 19卷 / 02期
基金
中国国家自然科学基金;
关键词
Quantitative detection; Near-infrared spectroscopy; Machine learning; Protein content; Alfalfa hay; NIR;
D O I
10.15376/biores.19.2.3808-3825
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
In this study, a quantitative model was developed using near-infrared spectroscopy to analyze protein content in dried purple alfalfa, employing preprocessing methods (SG, SNV, MSC, FD) and variable selection algorithms (CARS, IRIV) to optimize spectra. Models using ELM, PLSR, SVM, and LSTM were tested; the MSC-CARS-PLSR-SVM model achieved the highest accuracy, with a calibration determination coefficient (R-2) of 0.9982 and root mean square error (RMSE) of 0.1088, and a prediction R 2 of 0.9645 with RMSE of 0.5230, offering a precise and reliable method for protein content prediction.
引用
收藏
页码:3808 / 3825
页数:18
相关论文
共 50 条
  • [31] Detection of Plasmodium berghei infected Anopheles stephensi using near-infrared spectroscopy
    Esperaca, Pedro M.
    Blagborough, Andrew M.
    Da, Dari F.
    Dowell, Floyd E.
    Churcher, Thomas S.
    PARASITES & VECTORS, 2018, 11
  • [32] Detection of Plasmodium berghei infected Anopheles stephensi using near-infrared spectroscopy
    Pedro M. Esperança
    Andrew M. Blagborough
    Dari F. Da
    Floyd E. Dowell
    Thomas S. Churcher
    Parasites & Vectors, 11
  • [33] Rapid detection of microplastics in feeds using near-infrared spectroscopy
    Masoero, Giorgio
    Barbera, Salvatore
    Kaihara, Hatsumi
    Mabrouki, Sabah
    Patrucco, Sara Glorio
    Abid, Khalil
    Tassone, Sonia
    ACTA IMEKO, 2024, 13 (02): : 10 - 10
  • [34] Rapid Detection of Hydrolyzed Leather Protein Adulteration in Infant Formula by Near-infrared Spectroscopy
    Liu, Yisen
    Zhou, Songbin
    FOOD SCIENCE AND TECHNOLOGY RESEARCH, 2017, 23 (03) : 469 - 474
  • [35] Compensatory movement detection by using near-infrared spectroscopy technology based on signal improvement method
    Chen, Xiang
    Shao, YinJin
    Zou, LinFeng
    Tang, SiMin
    Lai, Zhiwei
    Sun, XiaoBo
    Xie, FaWen
    Xie, Longhan
    Luo, Jun
    Hu, Dongxia
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [36] Classification of Histamine Content in Fish Using Near-Infrared Spectroscopy and Machine Learning Techniques
    Ninh, Duy Khanh
    Phan, Kha Duy
    Vo, Cong Tuan
    Dang, Minh Nhat
    Thanh, Nhan Le
    INFORMATION, 2024, 15 (09)
  • [37] Evaluation of the moisture content of tapioca starch using near-infrared spectroscopy
    Phetpan, Kittisak
    Sirisomboon, Panmanas
    JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES, 2015, 8 (02)
  • [38] Quantifying ethanol content of beer using interpretive near-infrared spectroscopy
    Engelhard, S
    Löhmannsröben, HG
    Schael, F
    APPLIED SPECTROSCOPY, 2004, 58 (10) : 1205 - 1209
  • [39] Application of the near-infrared spectroscopy in the pharmaceutical technology
    Jamrogiewicz, Marzena
    JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, 2012, 66 : 1 - 10
  • [40] Rapid detection of protein content in rice based on Raman and near-infrared spectroscopy fusion strategy combined with characteristic wavelength selection
    Wang, Zhiqiang
    Liu, Jinming
    Zeng, Changhao
    Bao, Changhao
    Li, Zhijiang
    Zhang, Dongjie
    Zhen, Feng
    INFRARED PHYSICS & TECHNOLOGY, 2023, 129