Classical channel bandwidth requirements in continuous variable quantum key distribution systems

被引:0
作者
Almeida, Margarida [1 ,2 ]
Pereira, Daniel [1 ,2 ,3 ]
Pinto, Armando N. [1 ,2 ]
Silva, Nuno A. [1 ]
机构
[1] Univ Aveiro, Campus Univ Santiago, Inst Telecomunicacoes, Aveiro, Portugal
[2] Univ Aveiro, Campus Univ Santiago, Dept Elect Telecommun & Informat, Aveiro, Portugal
[3] Austrian Inst Technol, Vienna, Austria
来源
IET QUANTUM COMMUNICATION | 2024年 / 5卷 / 04期
关键词
quantum communication; quantum cryptography; RECONCILIATION;
D O I
10.1049/qtc2.12103
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The reconciliation method for continuous variable quantum key distribution systems is usually chosen based on its reconciliation efficiency. Nonetheless, one must also consider the requirements of each reconciliation method in terms of the amount of information transmitted on the classical channel. Such may limit the achievable key rates. For instance, multidimensional reconciliation of dimension 8 demands a classical channel bandwidth 43 times greater than that of the quantum channel baud rate. Decreasing the dimension to 4 halves the required bandwidth, allowing for higher quantum channel baud rates and higher key rates for shorter transmission distances, despite the lesser reconciliation performance. The reconciliation method for continuous variable quantum key distribution (CV-QKD) systems is usually chosen based on its reconciliation efficiency. Nonetheless, one must also consider the requirements of each reconciliation method in terms of the amount of information transmitted on the classical channel. Such may limit the achievable key rates. For instance, multidimensional reconciliation of dimension 8 demands a classical channel bandwidth 43 times greater than that of the quantum channel baud rate. Decreasing the dimension to 4 halves the required bandwidth, allowing for higher quantum channel baud rates and higher key rates for shorter transmission distances, despite the lesser reconciliation performance. image
引用
收藏
页码:601 / 611
页数:11
相关论文
共 33 条
[11]   Asymptotic security of discrete-modulation protocols for continuous-variable quantum key distribution [J].
Kaur, Eneet ;
Guha, Saikat ;
Wilde, Mark M. .
PHYSICAL REVIEW A, 2021, 103 (01)
[12]  
Leverrier A., 2009, Theoretical study of continuous-variable quantum key distribution
[13]   Finite-size analysis of a continuous-variable quantum key distribution [J].
Leverrier, Anthony ;
Grosshans, Frederic ;
Grangier, Philippe .
PHYSICAL REVIEW A, 2010, 81 (06)
[14]   Multidimensional reconciliation for a continuous-variable quantum key distribution [J].
Leverrier, Anthony ;
Alleaume, Romain ;
Boutros, Joseph ;
Zemor, Gilles ;
Grangier, Philippe .
PHYSICAL REVIEW A, 2008, 77 (04)
[15]   An improved multidimensional reconciliation algorithm for continuous-variable quantum key distribution [J].
Li, Qiong ;
Wen, Xuan ;
Mao, Haokun ;
Wen, Xiaojun .
QUANTUM INFORMATION PROCESSING, 2019, 18 (01)
[16]   Trusted Detector Noise Analysis for Discrete Modulation Schemes of Continuous-Variable Quantum Key Distribution [J].
Lin, Jie ;
Lutkenhaus, Norbert .
PHYSICAL REVIEW APPLIED, 2020, 14 (06)
[17]   Asymptotic Security Analysis of Discrete-Modulated Continuous-Variable Quantum Key Distribution [J].
Lin, Jie ;
Upadhyaya, Twesh ;
Lutkenhaus, Norbert .
PHYSICAL REVIEW X, 2019, 9 (04)
[18]   Quantum key distribution over 25 km with an all-fiber continuous-variable system [J].
Lodewyck, Jerome ;
Bloch, Matthieu ;
Garcia-Patron, Raul ;
Fossier, Simon ;
Karpov, Evgueni ;
Diamanti, Eleni ;
Debuisschert, Thierry ;
Cerf, Nicolas J. ;
Tualle-Brouri, Rosa ;
McLaughlin, Steven W. ;
Grangier, Philippe .
PHYSICAL REVIEW A, 2007, 76 (04)
[19]   Probabilistic shaped 128-APSK CV-QKD transmission system over optical fibres [J].
Pereira, Daniel ;
Almeida, Margarida ;
Facao, Margarida ;
Pinto, Armando N. ;
Silva, Nuno A. .
OPTICS LETTERS, 2022, 47 (15) :3948-3951
[20]   Impact of receiver imbalances on the security of continuous variables quantum key distribution [J].
Pereira, Daniel ;
Almeida, Margarida ;
Facao, Margarida ;
Pinto, Armando N. ;
Silva, Nuno A. .
EPJ QUANTUM TECHNOLOGY, 2021, 8 (01)