Generating functions of the Cauchy operator of a hamiltonian system

被引:0
作者
Shmyrov, A. S. [1 ]
Shmyrov, V. A. [1 ]
Shymanchuk, D. V. [1 ]
机构
[1] St Petersburg State Univ, 7-9 Univ Skaya Nab, St Petersburg 199034, Russia
来源
VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA | 2023年 / 19卷 / 04期
基金
俄罗斯科学基金会;
关键词
hamilton equations; generating function; Cauchy operator; variational principle;
D O I
10.21638/11701/spbu10.2023.408
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The article is related to the mathematical apparatus for describing the phase trajectories of a hamiltonian system. An approach related to the construction of generating functions for the Cauchy operator is proposed. It is shown that one -parameter families of generating functions satisfy the Hamilton - Jacobi equation or its modifications. Using the example of small oscillations of a mathematical pendulum, it is shown that the description of the Cauchy operator for sufficiently long periods of time requires the use of generating functions of various types. With the help of generating functions, a variational principle similar to the principle of least action is formulated. The efficiency of using generating functions in the development of conservative methods of numerical integration is also noted.
引用
收藏
页码:522 / 528
页数:7
相关论文
共 6 条
[1]  
Arnold V.I., 1989, Mathematical Methods in Classical Mechanics
[2]  
Malyavkin G. P., 2016, Vestnik of Saint Petersburg State University of Technology and Design. Natural and Technical Science, P34
[3]  
Markeev A.P., 1990, Theoretical Mechanics
[4]   The Research of Motion in a Neighborhood of Collinear Libration Point by Conservative Methods [J].
Shmyrov, A. ;
Shmyrov, V. ;
Shymanchuk, D. .
APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES, 2017, 1895
[5]  
Shmyrov A. S., 1995, Ustojchivost' v gamil'tonovyh sistemah Stability in hamiltonian systems
[6]   CONSTRUCTION OF HIGHER-ORDER SYMPLECTIC INTEGRATORS [J].
YOSHIDA, H .
PHYSICS LETTERS A, 1990, 150 (5-7) :262-268