Endosomal escape in magnetic nanostructures: Recent advances and future perspectives

被引:10
作者
Shirsat, Shubhangi D. [1 ]
Londhe, Prajkta, V [2 ]
Gaikwad, Ashwini P. [3 ]
Rizwan, Muhammad [4 ,5 ]
Laha, Suvra S. [6 ,7 ]
Khot, Vishwajeet M. [2 ]
Achal, Varenyam [1 ,8 ]
Tabish, Tanveer A. [9 ]
Thorat, Nanasaheb D. [10 ,11 ]
机构
[1] Guangdong Technion Israel Inst Technol, Environm Engn Program, Shantou 515063, Peoples R China
[2] DY Patil Educ Soc Deemed Univ, Ctr Interdisciplinary Res, Dept Med Phys, Kolhapur 416006, Maharashtra, India
[3] SM Joshi Coll, Pune, India
[4] Michigan Technol Univ, Dept Biomed Engn, Houghton, MI 49931 USA
[5] Michigan Technol Univ, Hlth Res Inst, Houghton, MI 49931 USA
[6] Indian Inst Sci, Ctr Nano Sci & Engn CeNSE, Bangalore 560012, India
[7] Clemson Univ, Dept Mat Sci & Engn, Clemson, SC 29634 USA
[8] Technion Israel Inst Technol, IL-32000 Haifa, Israel
[9] Univ Oxford, Radcliffe Dept Med, Div Cardiovasc Med, Oxford OX3 7DQ, England
[10] Univ Limerick, Limerick Digital Canc Res Ctr LDCRC, Dept Phys, Limerick V94 T9PX, Co Limerick, Ireland
[11] Univ Limerick, Bernal Inst, Limerick Digital Canc Res Ctr LDCRC, Limerick V94 T9PX, Co Limerick, Ireland
基金
爱尔兰科学基金会;
关键词
Magnetic nanostructures; Endosomal escape; Proton sponge effect; Membrane destabilization; Membrane translocation; Photochemical; Photothermal; pH triggered; Cell penetration peptides; Endosomolytic agent; IRON-OXIDE NANOPARTICLES; NONVIRAL GENE DELIVERY; CORE-SHELL NANOPARTICLES; ARGININE-RICH PEPTIDES; IN-VITRO; SILICA NANOPARTICLES; EFFICIENT DELIVERY; PROTEIN TOXINS; ENTER CELLS; DNA;
D O I
10.1016/j.mtadv.2024.100484
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Several evolving therapies depend on the delivery of therapeutic cargo into the cytoplasm. Engineered magnetic nanoparticles (MNPs) have played a pivotal role in advancing and modernizing cancer theranostics, vaccination and gene therapies. The main advantages of MNP-based delivery approaches are due to their potential to decrease the side effects by targeting specific cell types, shielding delicate therapeutics from early degradation, increasing the solubility of hard -to -deliver drugs and long -sustained and precise release of these drugs. Like other nanoparticles (NPs), MNPs enter cells by endocytosis and are frequently stuck inside endocytic vesicles, which mature into early and late endosomes and accumulate in the lysosome. Endocytosed MNPs are ultimately degraded in lysosomes or recycled towards the cell membrane. Thereby, they must escape endocytic vesicles on a priority basis. Endosomal escape is highly important for the effectiveness of nanoparticle-based treatments. This review is concerned with the use of magnetic nanoparticles (MNPs) as functional nano -objects to enhance the therapeutic effects by disrupting or rupturing the endocytic vesicles in terms of endosomal escape. The current strategies and future challenges concerning an efficient endosomal escape of MNPs are discussed in this review.
引用
收藏
页数:20
相关论文
共 170 条
[1]  
Adumeau L, 2018, CLINICAL APPLICATIONS OF MAGNETIC NANOPARTICLES: DESIGN TO DIAGNOSIS MANUFACTURING TO MEDICINE, P77
[2]   Low Molecular Weight Chitosan (LMWC)-based Polyplexes for pDNA Delivery: From Bench to Bedside [J].
Agirre, Mireia ;
Zarate, Jon ;
Ojeda, Edilberto ;
Puras, Gustavo ;
Desbrieres, Jacques ;
Luis Pedraz, Jose .
POLYMERS, 2014, 6 (06) :1727-1755
[3]   Strategies in the design of endosomolytic agents for facilitating endosomal escape in nanoparticles [J].
Ahmad, Acieel ;
Khan, Javed Masood ;
Haque, Shafiul .
BIOCHIMIE, 2019, 160 :61-75
[4]   Novel endosomolytic peptides for enhancing gene delivery in nanoparticles [J].
Ahmad, Aqeel ;
Ranjan, Sanjeev ;
Zhang, Weikai ;
Zou, Jing ;
Pyykko, Ilmari ;
Kinnunen, Paavo K. J. .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2015, 1848 (02) :544-553
[5]   Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis [J].
Akinc, A ;
Thomas, M ;
Klibanov, AM ;
Langer, R .
JOURNAL OF GENE MEDICINE, 2005, 7 (05) :657-663
[6]   Nanoparticles for ex vivo siRNA delivery to dendritic cells for cancer vaccines: Programmed endosomal escape and dissociation [J].
Akita, Hidetaka ;
Kogure, Kentaro ;
Moriguchi, Rumiko ;
Nakamura, Yoshio ;
Higashi, Tomoko ;
Nakamura, Takashi ;
Serada, Satoshi ;
Fujimoto, Minoru ;
Naka, Tetsuji ;
Futaki, Shiroh ;
Harashima, Hideyoshi .
JOURNAL OF CONTROLLED RELEASE, 2010, 143 (03) :311-317
[7]   Obinutuzumab-related adverse events: A systematic review and meta-analysis [J].
Amitai, Irina ;
Gafter-Gvili, Anat ;
Shargian-Alon, Liat ;
Raanani, Pia ;
Gurion, Ronit .
HEMATOLOGICAL ONCOLOGY, 2021, 39 (02) :215-221
[8]   Understanding rituximab function and resistance: implications for tailored therapy [J].
Amoroso, Alfredo ;
Hafsi, Sameh ;
Militello, Loredana ;
Russo, Alessia E. ;
Soua, Zohra ;
Mazzarino, Maria C. ;
Stivala, Franca ;
Libra, Massimo .
FRONTIERS IN BIOSCIENCE-LANDMARK, 2011, 16 :770-782
[9]   Recent progress of magnetic nanoparticles in biomedical applications: A review [J].
Anik, Muzahidul I. ;
Hossain, M. Khalid ;
Hossain, Imran ;
Mahfuz, A. M. U. B. ;
Rahman, M. Tayebur ;
Ahmed, Isteaque .
NANO SELECT, 2021, 2 (06) :1146-1186
[10]   Functionalized nanoparticles enable tracking the rapid entry and release of doxorubicin in human pancreatic cancer cells [J].
Arachchige, Maheshika P. ;
Laha, Suvra S. ;
Naik, Akshata R. ;
Lewis, Kenneth T. ;
Naik, Ratna ;
Jena, Bhanu P. .
MICRON, 2017, 92 :25-31