Aqueous electrolyte additives for zinc-ion batteries

被引:5
|
作者
Wu, Zhuoxi [1 ]
Huang, Zhaodong [1 ]
Zhang, Rong [1 ]
Hou, Yue [1 ]
Zhi, Chunyi [1 ,2 ,3 ,4 ]
机构
[1] City Univ Hong Kong, Dept Mat Sci & Engn, Kowloon, Hong Kong 999077, Peoples R China
[2] City Univ Hong Kong, Hong Kong Inst Adv Study, Kowloon, Hong Kong 999077, Peoples R China
[3] City Univ Hong Kong, Hong Kong Inst Clean Energy, Kowloon, Hong Kong 999077, Peoples R China
[4] City Univ Hong Kong, Ctr Adv Nucl Safety & Sustainable Dev, Kowloon, Hong Kong 999077, Peoples R China
关键词
zinc-ion battery; electrolyte additives; solvation structure; solid electrolyte interphase protection layer; Zn dendrites; H-2; evolution; HIGH-ENERGY; HIGH-VOLTAGE; CHALLENGES; STRATEGIES; ANODE; WATER; REVERSIBILITY; MECHANISMS; CORROSION;
D O I
10.1088/2631-7990/ad65ca
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Because of their high safety, low cost, and high volumetric specific capacity, zinc-ion batteries (ZIBs) are considered promising next-generation energy storage devices, especially given their high potential for large-scale energy storage. Despite these advantages, many problems remain for ZIBs-such as Zn dendrite growth, hydrogen evolution, and Zn anode corrosion-which significantly reduce the coulomb efficiency and reversibility of the battery and limit its cycle lifespan, resulting in much uncertainty in terms of its practical applications. Numerous electrolyte additives have been proposed in recent years to solve the aforementioned problems. This review focuses on electrolyte additives and discusses the different substances employed as additives to overcome the problems by altering the Zn2+ solvation structure, creating a protective layer at the anode-electrolyte interface, and modulating the Zn2+ distribution to be even and Zn deposition to be uniform. On the basis of the review, the possible research strategies, future directions of electrolyte additive development, and the existing problems to be solved are also described.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries
    Guo, Shan
    Qin, Liping
    Zhang, Tengsheng
    Zhou, Miao
    Zhou, Jiang
    Fang, Guozhao
    Liang, Shuquan
    ENERGY STORAGE MATERIALS, 2021, 34 : 545 - 562
  • [2] Additives for Aqueous Zinc-Ion Batteries: Recent Progress, Mechanism Analysis, and Future Perspectives
    Cao, Jianghui
    Zhao, Fang
    Guan, Weixin
    Yang, Xiaoxuan
    Zhao, Qidong
    Gao, Liguo
    Ren, Xuefeng
    Wu, Gang
    Liu, Anmin
    SMALL, 2024, 20 (33)
  • [3] From electrolyte to electrode interface: Understanding impacts of electrolyte additives for aqueous zinc-ion batteries
    Deng, Zeshen
    Ouyang, Liuzhang
    Ma, Longtao
    Yang, Lichun
    Zhu, Min
    CURRENT OPINION IN ELECTROCHEMISTRY, 2024, 45
  • [4] Minireview and Perspectives on Functional Electrolyte Additives for Aqueous Zinc-Ion Batteries
    Liu, Ling
    Liu, Yangyang
    Zhang, Longhai
    Wang, Rui
    Ma, Quanwei
    Xiong, Peng
    Zhang, Chaofeng
    ENERGY & FUELS, 2024, 38 (17) : 15998 - 16009
  • [5] Research progress on the design of electrolyte additives and their functions for zinc-ion batteries
    Cui, Yuxin
    Zhang, Ruixin
    Yang, Sinian
    Liu, Lili
    Chen, Shimou
    MATERIALS FUTURES, 2024, 3 (01):
  • [6] Research progress on electrolyte additives for aqueous zinc-ion batteries: From function to mechanism
    Liu, Zeqi
    Dai, Geliang
    Su, Shanshan
    Sun, Aokui
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1022
  • [7] Potassium-Ion-Doped Manganese Oxides and Kaolinite Electrolyte Additives for Aqueous Zinc-Ion Batteries
    Li, Wentao
    Qin, Liping
    Liu, Zhexuan
    Li, Lijun
    Li, Wenbo
    Fang, Guozhao
    ACS APPLIED NANO MATERIALS, 2024, 7 (08) : 9720 - 9729
  • [8] Recent Advances in Current Collectors for Aqueous Zinc-ion Batteries
    Li, Hao
    Li, Le
    Liu, Wanxin
    Jia, Shaofeng
    Yue, Shi
    Yang, Yuanyuan
    Wang, Conghui
    Tan, Chao
    Zhang, Dan
    CHEMICAL RECORD, 2025, 25 (03)
  • [9] Electrolyte Additive Strategies for Safe and High-Performance Aqueous Zinc-Ion Batteries: A Mini-Review
    Zhang, Da
    Miao, Ling
    Song, Ziyang
    Zheng, Xunwen
    Lv, Yaokang
    Gan, Lihua
    Liu, Mingxian
    ENERGY & FUELS, 2024, 38 (14) : 12510 - 12527
  • [10] Aqueous Zinc-ion Batteries
    Xie, Zhiying
    Zheng, Xinhua
    Wang, Mingming
    Yu, Haizhou
    Qiu, Xiaoyan
    Chen, Wei
    PROGRESS IN CHEMISTRY, 2023, 35 (11) : 1701 - 1726