A finite crack growth energy release rate for interlaminar fracture analysis of composite material at different temperatures

被引:3
作者
Wu, Mengxuan [1 ]
Wang, Hongxiao [2 ]
Xu, Wu [1 ]
机构
[1] Shanghai Jiao Tong Univ, Aerosp Struct Res Ctr, Sch Aeronaut & Astronaut, Shanghai 200240, Peoples R China
[2] Henan Univ Technol, Sch Mech & Elect Engn, Zhengzhou 450001, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Interlaminar fracture toughness; Different temperatures; Multiscale analysis; Anisotropic plasticity; Finite crack growth energy release rate; DELAMINATION; TOUGHNESS; STRENGTH;
D O I
10.1016/j.engfracmech.2024.110095
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The interlaminar fracture toughness of unidirectional fiber reinforced polymer composite material is temperature and crack growth history dependence. The non -constant interlaminar fracture toughness challenges the wide application of the linear elastic fracture mechanics -based approach for analyzing the interlaminar crack growth in composite material and structures. In addition, a quantitative relationship between the ductility of the matrix and interlaminar fracture toughness of the fiber reinforced composite is still highly desirable. In this paper, both pure resin and composite double cantilever beam (DCB) are tested at different temperatures. A finite crack growth energy release rate is used to analyze the interlaminar crack growth behavior of composite material at different temperatures. The plasticity of the composite DCB is modeled by Hill ' s anisotropic plasticity, with the properties determined from multiscale analyses. It is found that a single constant finite growth energy release rate can well predict the interlaminar mode I crack growth of composite material at different temperatures. The roles of the ductility of matrix, thickness of the DCB, and crack growth history on the interlaminar mode I fracture toughness of composite material are quantitatively determined by using the present method.
引用
收藏
页数:16
相关论文
共 41 条
  • [1] [Anonymous], 2014, ABAQUS 6 14 USERS MA
  • [2] [Anonymous], 2013, STANDARD TEST METHOD, DOI [DOI 10.1520/D5528, 10.1520/D5528-13, DOI 10.1520/D5528-13]
  • [3] Barenblatt GI, 1962, ADV APPL MECH, V7, P55, DOI [10.1016/S0065-2156(08)70121-2, DOI 10.1016/S0065-2156(08)70121-2]
  • [4] A status report on delamination resistance testing of polymer-matrix composites
    Brunner, A. J.
    Blackman, B. R. K.
    Davies, P.
    [J]. ENGINEERING FRACTURE MECHANICS, 2008, 75 (09) : 2779 - 2794
  • [5] On temperature-dependent fiber bridging in mode I delamination of unidirectional composite laminates
    Cao, Junchao
    Gu, Jiahui
    Dang, Zhilong
    Zhang, Chao
    [J]. COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2023, 171
  • [6] Influence of temperature on a carbon-fibre epoxy composite subjected to static and fatigue loading under mode-I delamination
    Coronado, P.
    Argueelles, A.
    Vina, J.
    Mollon, V.
    Vina, I.
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2012, 49 (21) : 2934 - 2940
  • [7] The interlaminar and intralaminar fracture toughness of carbon-fibre/polymer composites: The effect of temperature
    Cowley, KD
    Beaumont, PWR
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 1997, 57 (11) : 1433 - 1444
  • [8] Determination of the mode I, mode II, and mixed-mode I-II delamination toughness of a graphite/polyimide composite at room and elevated temperatures
    Czabaj, Michael W.
    Davidson, Barry D.
    [J]. JOURNAL OF COMPOSITE MATERIALS, 2016, 50 (16) : 2235 - 2253
  • [9] Specimen thickness dependence of large scale fiber bridging in mode I interlaminar fracture of carbon epoxy composite
    Farmand-Ashtiani, E.
    Cugnoni, J.
    Botsis, J.
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2015, 55 : 58 - 65
  • [10] Feng W.W., 1983, J COMPOS TECH RES, V5, P118, DOI [10.1520/ CTR10810J, DOI 10.1520/CTR10810J]