Zinc finger knuckle genes are associated with tolerance to drought and dehydration in chickpea (Cicer arietinum L.)

被引:4
|
作者
Khassanova, Gulmira [1 ,2 ]
Oshergina, Irina [2 ]
Ten, Evgeniy [2 ]
Jatayev, Satyvaldy [1 ]
Zhanbyrshina, Nursaule [1 ]
Gabdola, Ademi [1 ]
Gupta, Narendra K. [3 ]
Schramm, Carly [4 ]
Pupulin, Antonio [4 ]
Philp-Dutton, Lauren [4 ]
Anderson, Peter [4 ]
Sweetman, Crystal [4 ]
Jenkins, Colin L. D. [4 ]
Soole, Kathleen L. [4 ]
Shavrukov, Yuri [4 ]
机构
[1] S Seifullin Kazakh Agrotech Res Univ, Fac Agron, Astana, Kazakhstan
[2] AI Barayev Res & Prod Ctr Grain Farming, Dept Crop Breeding, Shortandy, Kazakhstan
[3] Sri Karan Narendra SNK Agr Univ, Dept Plant Physiol, Jobster, Rajastan, India
[4] Flinders Univ S Australia, Coll Sci & Engn, Biol Sci, Adelaide, SA, Australia
来源
FRONTIERS IN PLANT SCIENCE | 2024年 / 15卷
关键词
CCHC domain; chickpea; DArT analysis; drought and dehydration; gene expression; seed yield; SNP; zinc finger knuckle gene; RNA CHAPERONE ACTIVITY; SHOCK DOMAIN PROTEINS; BINDING PROTEIN; ARABIDOPSIS-THALIANA; RESPONSIVE GENES; STRESS TOLERANCE; ABSCISIC-ACID; COLD; IDENTIFICATION; EXPRESSION;
D O I
10.3389/fpls.2024.1354413
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Chickpea (Cicer arietinum L.) is a very important food legume and needs improved drought tolerance for higher seed production in dry environments. The aim of this study was to determine diversity and genetic polymorphism in zinc finger knuckle genes with CCHC domains and their functional analysis for practical improvement of chickpea breeding. Two CaZF-CCHC genes, Ca04468 and Ca07571, were identified as potentially important candidates associated with plant responses to drought and dehydration. To study these genes, various methods were used including Sanger sequencing, DArT (Diversity array technology) and molecular markers for plant genotyping, gene expression analysis using RT-qPCR, and associations with seed-related traits in chickpea plants grown in field trials. These genes were studied for genetic polymorphism among a set of chickpea accessions, and one SNP was selected for further study from four identified SNPs between the promoter regions of each of the two genes. Molecular markers were developed for the SNP and verified using the ASQ and CAPS methods. Genotyping of parents and selected breeding lines from two hybrid populations, and SNP positions on chromosomes with haplotype identification, were confirmed using DArT microarray analysis. Differential expression profiles were identified in the parents and the hybrid populations under gradual drought and rapid dehydration. The SNP-based genotypes were differentially associated with seed weight per plant but not with 100 seed weight. The two developed and verified SNP molecular markers for both genes, Ca04468 and Ca07571, respectively, could be used for marker-assisted selection in novel chickpea cultivars with improved tolerance to drought and dehydration.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Effect of drought stress on the expression pattern of genes involved in ABA biosynthesis in Desi-type chickpea (Cicer arietinum L.)
    Kasbi, Elahe Abbaszadeh
    Taleei, Alireza
    Amiri, Reza Maali
    MOLECULAR BIOLOGY REPORTS, 2024, 51 (01)
  • [42] Transcriptome Sequencing of Chickpea (Cicer arietinum L.) Genotypes for Identification of Drought-Responsive Genes Under Drought Stress Condition
    Manoj Kumar
    Abhishek Singh Chauhan
    Manoj Kumar
    Mohd Aslam Yusuf
    Indraneel Sanyal
    Puneet Singh Chauhan
    Plant Molecular Biology Reporter, 2019, 37 : 186 - 203
  • [43] Morphological characterization and grouping of chickpea (Cicer arietinum) genotypes for drought tolerance
    Kumar, Tapan
    Bharadwaj, C.
    Tiwari, Neha
    Satyavathi, C. Tara
    Patil, B. S.
    Sarker, Ashutosh
    Alam, Afroz
    INDIAN JOURNAL OF AGRICULTURAL SCIENCES, 2018, 88 (11): : 92 - 97
  • [44] Specific activities and transcript levels of glycolytic enzymes under dehydration in chickpea (Cicer arietinum L.) seedlings
    Khanna, Suruchi M.
    Taxak, Pooja C.
    Jain, Pradeep
    Saini, R.
    LEGUME RESEARCH, 2016, 39 (03) : 405 - 410
  • [45] High-throughput phenotyping for terminal drought stress in chickpea (Cicer arietinum L.)
    Pappula-Reddy, Sneha-Priya
    Kumar, Sudhir
    Pang, Jiayin
    Chellapilla, Bharadwaj
    Pal, Madan
    Millar, A. Harvey
    Siddique, Kadambot H. M.
    PLANT STRESS, 2024, 11
  • [46] Antioxidant systems, germination and nodulation in chickpea (Cicer arietinum L.) genotypes under drought
    Khadraji, A.
    Mouradi, M.
    Ghoulam, C.
    MOROCCAN JOURNAL OF CHEMISTRY, 2016, 4 (04): : 901 - 910
  • [47] Expression Patterns of Drought-related miRNAs in Chickpea (Cicer arietinum L.) under Drought Stress
    Gaafar, Reda M.
    Seyam, Maha M.
    El-Shanshory, Adel R.
    EGYPTIAN JOURNAL OF BOTANY, 2022, 62 (01): : 227 - 240
  • [48] Study of direct selection in chickpea (Cicer arietinum L.)
    Dubey, Kashyap Kumar
    Srivastava, S. B. L.
    PLANT ARCHIVES, 2007, 7 (01): : 211 - 212
  • [49] Characterization of drought tolerant accessions identified from the minicore of chickpea (Cicer arietinum L.)
    Parameshwarappa, S. G.
    Salimath, P. M.
    Upadhyaya, H. D.
    Patil, S. S.
    Kajjidoni, S. T.
    Patil, B. C.
    INDIAN JOURNAL OF GENETICS AND PLANT BREEDING, 2010, 70 (02) : 125 - 131
  • [50] Variation in root traits of chickpea (Cicer arietinum L.) grown under terminal drought
    Serraj, R
    Krishnamurthy, L
    Kashiwagi, J
    Kumar, J
    Chandra, S
    Crouch, JH
    FIELD CROPS RESEARCH, 2004, 88 (2-3) : 115 - 127