Data-driven Identification of Approximate Passive Linear Models for Nonlinear Systems

被引:0
|
作者
Sivaranjani, S. [1 ]
Agarwal, Etika [1 ]
Gupta, Vijay [1 ]
机构
[1] Univ Notre Dame, Dept Elect Engn, Notre Dame, IN 46556 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In model-based learning, it is desirable for the learned model to preserve structural properties of the system that may facilitate easier control design or provide performance, stability or safety guarantees. Here, we consider an unknown nonlinear system possessing such a structural property passivity, that can be used to ensure robust stability with a learned controller. We present an algorithm to learn a passive linear model of this nonlinear system from time domain input-output data. We first learn an approximate linear model of this system using any standard system identification technique. We then enforce passivity by perturbing the system matrices of the linear model, while ensuring that the perturbed model closely approximates the input-output behavior of the nonlinear system. Finally, we derive a trade-off between the perturbation size and the radius of the region in which the passivity of the linear model guarantees local passivity of the unknown nonlinear system.
引用
收藏
页码:338 / 339
页数:2
相关论文
共 50 条
  • [31] Data-Driven Positive Stabilization of Linear Systems
    Shafai, Bahram
    Moradmand, Anahita
    Siami, Milad
    2022 8TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT'22), 2022, : 1031 - 1036
  • [32] Data-Driven Abstractions for Verification of Linear Systems
    Coppola, Rudi
    Peruffo, Andrea
    Mazo Jr, Manuel
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 2737 - 2742
  • [33] DATA-DRIVEN BALANCING OF LINEAR DYNAMICAL SYSTEMS
    Gosea, Ion Victor
    Gugercin, Serkan
    Beattie, Christopher
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (01): : A554 - A582
  • [34] On the Robustness of Data-Driven Controllers for Linear Systems
    Anguluri, Rajasekhar
    Al Makdah, Abed AlRahman
    Katewa, Vaibhav
    Pasqualetti, Fabio
    LEARNING FOR DYNAMICS AND CONTROL, VOL 120, 2020, 120 : 404 - 412
  • [35] Data-Driven Finite Element Models of Passive Filamentary Networks
    Adam, Brian
    Mitran, Sorin
    COMPLEXITY, 2018,
  • [36] Data-driven quantum approximate optimization algorithm for power systems
    Hang Jing
    Ye Wang
    Yan Li
    Communications Engineering, 2 (1):
  • [37] Linear Tracking MPC for Nonlinear Systems-Part II: The Data-Driven Case
    Berberich, Julian
    Koehler, Johannes
    Mueller, Matthias A.
    Allgoewer, Frank
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (09) : 4406 - 4421
  • [38] A data-driven process for estimating nonlinear material models
    Kou, X. Y.
    Tan, S. T.
    Lipson, Hod
    INTELLIGENT STRUCTURE AND VIBRATION CONTROL, PTS 1 AND 2, 2011, 50-51 : 599 - +
  • [39] Data-driven port-Hamiltonian structured identification for non-strictly passive systems
    Poussot-Vassal, Charles
    Matignon, Denis
    Haine, Ghilslain
    Vuillemin, Pierre
    2023 EUROPEAN CONTROL CONFERENCE, ECC, 2023,
  • [40] Identification of High-Order Nonlinear Coupled Systems Using a Data-Driven Approach
    Velazquez-Sanchez, Rodolfo Daniel
    Escobedo-Alva, Jonathan Omega
    Pena-Garcia, Raymundo
    Tapia-Herrera, Ricardo
    Meda-Campana, Jesus Alberto
    APPLIED SCIENCES-BASEL, 2024, 14 (09):