Genetic Knock-Ins of Endogenous Fluorescent Tags in RAW 264.7 Murine Macrophages Using CRISPR/Cas9 Genome Editing

被引:1
作者
Naigles, Beverly [1 ]
Soroczynski, Jan [2 ]
Hao, Nan [1 ,3 ]
机构
[1] Univ Calif San Diego, Deparment Mol Biol, La Jolla, CA 92093 USA
[2] Rockefeller Univ, Lab Genome Architecture & Dynam, New York, NY USA
[3] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
关键词
RAW; 264.7; Macrophage; CRISPR knock-in; Endogenous tagging; Genome editing; CRISPR-CAS9;
D O I
10.21769/BioProtoc.4960
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
CRISPR/Cas9 genome editing is a widely used tool for creating genetic knock -ins, which allow for endogenous tagging of genes. This is in contrast with random insertion using viral vectors, where expression of the inserted transgene changes the total copy number of a gene in a cell and does not reflect the endogenous chromatin environment or any trans -acting regulation experienced at a locus. There are very few protocols for endogenous fluorescent tagging in macrophages. Here, we describe a protocol to design and test CRISPR guide RNAs and donor plasmids, to transfect them into RAW 264.7 mouse macrophage -like cells using the Neon transfection system and to grow up clonal populations of cells containing the endogenous knock -in at various loci. We have used this protocol to create endogenous fluorescent knock -ins in at least six loci, including both endogenously tagging genes and inserting transgenes in the Rosa26 and Tigre safe harbor loci. This protocol uses circular plasmid DNA as the donor template and delivers the sgRNA and Cas9 as an all -in -one expression plasmid. We designed this protocol for fluorescent protein knock -ins; it is best used when positive clones can be identified by fluorescence. However, it may be possible to adapt the protocol for non -fluorescent knock -ins. This protocol allows for the fairly straightforward creation of clonal populations of macrophages with tags at the endogenous loci of genes. We also describe how to set up imaging experiments in 24 -well plates to track fluorescence in the edited cells over time.
引用
收藏
页数:21
相关论文
共 15 条
[1]   Efficient biallelic knock-in in mouse embryonic stem cells by in vivo-linearization of donor and transient inhibition of DNA polymerase θ/DNA-PK [J].
Arai, Daisuke ;
Nakao, Yoichi .
SCIENTIFIC REPORTS, 2021, 11 (01)
[2]   Enhancing CRISPR deletion via pharmacological delay of DNA-PKcs [J].
Bosch-Guiteras, Nuria ;
Uroda, Tina ;
Guillen-Ramirez, Hugo A. ;
Riedo, Rahel ;
Gazdhar, Amiq ;
Esposito, Roberta ;
Pulido-Quetglas, Carlos ;
Zimmer, Yitzhak ;
Medova, Michaela ;
Johnson, Rory .
GENOME RESEARCH, 2021, 31 (03) :461-471
[3]   The new frontier of genome engineering with CRISPR-Cas9 [J].
Doudna, Jennifer A. ;
Charpentier, Emmanuelle .
SCIENCE, 2014, 346 (6213) :1077-+
[4]   Efficient gene knockout in primary human and murine myeloid cells by non-viral delivery of CRISPR-Cas9 [J].
Freund, Emily C. ;
Lock, Jaclyn Y. ;
Oh, Jaehak ;
Maculins, Timurs ;
Delamarre, Lelia ;
Bohlen, Christopher J. ;
Haley, Benjamin ;
Murthy, Aditya .
JOURNAL OF EXPERIMENTAL MEDICINE, 2020, 217 (07)
[5]   Development and Applications of CRISPR-Cas9 for Genome Engineering [J].
Hsu, Patrick D. ;
Lander, Eric S. ;
Zhang, Feng .
CELL, 2014, 157 (06) :1262-1278
[6]   Generation of a PDGFRB-mCherry knock-in reporter human induced pluripotent stem cell line (KITi001-A-1), using CRISPR/Cas9 nuclease [J].
Jo, Seongyea ;
Kim, Ji-Woo ;
Noh, Haneul ;
Kim, Hyemin ;
Kim, Jong-Hoon ;
Park, Han-Jin .
STEM CELL RESEARCH, 2023, 69
[7]   Generation and validation of homozygous fluorescent knock-in cells using CRISPR-Cas9 genome editing [J].
Koch, Birgit ;
Nijmeijer, Bianca ;
Kueblbeck, Moritz ;
Cai, Yin ;
Walther, Nike ;
Ellenberg, Jan .
NATURE PROTOCOLS, 2018, 13 (06) :1465-1487
[8]   ssDNA is not superior to dsDNA as long HDR donors for CRISPR-mediated endogenous gene tagging in human diploid RPE1 and HCT116 cells [J].
Mabuchi, Akira ;
Hata, Shoji ;
Genova, Mariya ;
Tei, Chiharu ;
Ito, Kei K. ;
Hirota, Masayasu ;
Komori, Takuma ;
Fukuyama, Masamitsu ;
Chinen, Takumi ;
Toyoda, Atsushi ;
Kitagawa, Daiju .
BMC GENOMICS, 2023, 24 (01)
[9]   Quantifying dynamic pro-inflammatory gene expression and heterogeneity in single macrophage cells [J].
Naigles, Beverly ;
Narla, Avaneesh V. ;
Soroczynski, Jan ;
Tsimring, Lev S. ;
Hao, Nan .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2023, 299 (10)
[10]   Targeted Degradation of CTCF Decouples Local Insulation of Chromosome Domains from Genomic Compartmentalization [J].
Nora, Elphege P. ;
Goloborodko, Anton ;
Valton, Anne-Laure ;
Gibcus, Johan H. ;
Uebersohn, Alec ;
Abdennur, Nezar ;
Dekker, Job ;
Mirny, Leonid A. ;
Bruneau, Benoit G. .
CELL, 2017, 169 (05) :930-+