ContraNovo: A Contrastive Learning Approach to Enhance De Novo Peptide Sequencing

被引:0
作者
Jin, Zhi [1 ,2 ]
Xu, Sheng [1 ,3 ]
Zhang, Xiang [1 ,4 ]
Ling, Tianze [5 ]
Dong, Nanqing [1 ]
Ouyang, Wanli [1 ]
Gao, Zhiqiang [1 ]
Chang, Cheng [5 ]
Sun, Siqi [1 ,3 ]
机构
[1] Shanghai Artificial Intelligence Lab, Shanghai, Peoples R China
[2] Soochow Univ, Dept Comp Sci, Suzhou, Peoples R China
[3] Fudan Univ, Res Inst Intelligent Complex Syst, Shanghai, Peoples R China
[4] Univ British Columbia, Vancouver, BC, Canada
[5] Natl Ctr Prot Sci, Beijing, Peoples R China
来源
THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 1 | 2024年
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
De novo peptide sequencing from mass spectrometry (MS) data is a critical task in proteomics research. Traditional de novo algorithms have encountered a bottleneck in accuracy due to the inherent complexity of proteomics data. While deep learning-based methods have shown progress, they reduce the problem to a translation task, potentially overlooking critical nuances between spectra and peptides. In our research, we present ContraNovo, a pioneering algorithm that leverages contrastive learning to extract the relationship between spectra and peptides and incorporates the mass information into peptide decoding, aiming to address these intricacies more efficiently. Through rigorous evaluations on two benchmark datasets, ContraNovo consistently outshines contemporary state-of-the-art solutions, underscoring its promising potential in enhancing de novo peptide sequencing.
引用
收藏
页码:144 / 152
页数:9
相关论文
共 50 条
  • [41] PepNovo: De novo peptide sequencing via probabilistic network modeling
    Frank, A
    Pevzner, P
    [J]. ANALYTICAL CHEMISTRY, 2005, 77 (04) : 964 - 973
  • [42] Novor: Real-Time Peptide de Novo Sequencing Software
    Ma, Bin
    [J]. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2015, 26 (11) : 1885 - 1894
  • [43] Peptide de novo sequencing facilitated by a dual-labeling strategy
    Beardsley, RL
    Sharon, LA
    Reilly, JP
    [J]. ANALYTICAL CHEMISTRY, 2005, 77 (19) : 6300 - 6309
  • [44] A dynamic programming algorithm for de novo peptide sequencing with variable scoring
    Goto, Matthew A.
    Schwabe, Eric J.
    [J]. BIOINFORMATICS RESEARCH AND APPLICATIONS, 2008, 4983 : 171 - 182
  • [45] DeNovoCNN: a deep learning approach to de novo variant calling in next generation sequencing data
    Khazeeva, Gelana
    Sablauskas, Karolis
    van der Sanden, Bart
    Steyaert, Wouter
    Kwint, Michael
    Rots, Dmitrijs
    Hinne, Max
    van Gerven, Marcel
    Yntema, Helger
    Vissers, Lisenka
    Gilissen, Christian
    [J]. NUCLEIC ACIDS RESEARCH, 2022, 50 (17)
  • [46] A Framework of De Novo Peptide Sequencing for Multiple Tandem Mass Spectra
    Yan, Yan
    Kusalik, Anthony J.
    Wu, Fang-Xiang
    [J]. IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2015, 14 (04) : 478 - 484
  • [47] Evaluation of a GPGPU-based de novo Peptide Sequencing Algorithm
    Chao, Sankua
    Green, James R.
    Smith, Jeffrey C.
    [J]. JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2014, 34 (05) : 461 - 468
  • [48] NovoPair: de novo peptide sequencing for tandem mass spectra pair
    Yan, Yan
    Kusalik, Anthony J.
    Wu, Fang-Xiang
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2014,
  • [49] pNovo: De novo Peptide Sequencing and Identification Using HCD Spectra
    Chi, Hao
    Sun, Rui-Xiang
    Yang, Bing
    Song, Chun-Qing
    Wang, Le-Heng
    Liu, Chao
    Fu, Yan
    Yuan, Zuo-Fei
    Wang, Hai-Peng
    He, Si-Min
    Dong, Meng-Qiu
    [J]. JOURNAL OF PROTEOME RESEARCH, 2010, 9 (05) : 2713 - 2724
  • [50] DeNovoCNN: A deep learning approach to de novo variant calling in next generation sequencing data
    Khazeeva, Gelana
    Sablauskas, Karolis
    Van der Sanden, Bart
    Steyaert, Wouter
    Kwint, Michael
    Rots, Dmitrijs
    Hinne, Max
    van Gerven, Marcel
    Yntema, Helger
    Vissers, Lisenka
    Gilissen, Christian
    [J]. EUROPEAN JOURNAL OF HUMAN GENETICS, 2024, 32 : 662 - 662