ContraNovo: A Contrastive Learning Approach to Enhance De Novo Peptide Sequencing

被引:0
|
作者
Jin, Zhi [1 ,2 ]
Xu, Sheng [1 ,3 ]
Zhang, Xiang [1 ,4 ]
Ling, Tianze [5 ]
Dong, Nanqing [1 ]
Ouyang, Wanli [1 ]
Gao, Zhiqiang [1 ]
Chang, Cheng [5 ]
Sun, Siqi [1 ,3 ]
机构
[1] Shanghai Artificial Intelligence Lab, Shanghai, Peoples R China
[2] Soochow Univ, Dept Comp Sci, Suzhou, Peoples R China
[3] Fudan Univ, Res Inst Intelligent Complex Syst, Shanghai, Peoples R China
[4] Univ British Columbia, Vancouver, BC, Canada
[5] Natl Ctr Prot Sci, Beijing, Peoples R China
来源
THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 1 | 2024年
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
De novo peptide sequencing from mass spectrometry (MS) data is a critical task in proteomics research. Traditional de novo algorithms have encountered a bottleneck in accuracy due to the inherent complexity of proteomics data. While deep learning-based methods have shown progress, they reduce the problem to a translation task, potentially overlooking critical nuances between spectra and peptides. In our research, we present ContraNovo, a pioneering algorithm that leverages contrastive learning to extract the relationship between spectra and peptides and incorporates the mass information into peptide decoding, aiming to address these intricacies more efficiently. Through rigorous evaluations on two benchmark datasets, ContraNovo consistently outshines contemporary state-of-the-art solutions, underscoring its promising potential in enhancing de novo peptide sequencing.
引用
收藏
页码:144 / 152
页数:9
相关论文
共 50 条
  • [1] De novo peptide sequencing by deep learning
    Ngoc Hieu Tran
    Zhang, Xianglilan
    Xin, Lei
    Shan, Baozhen
    Li, Ming
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (31) : 8247 - 8252
  • [2] On peptide de novo sequencing:: a new approach
    Bruni, R
    Gianfranceschi, G
    Koch, G
    JOURNAL OF PEPTIDE SCIENCE, 2005, 11 (04) : 225 - 234
  • [3] Deep Learning Methods for De Novo Peptide Sequencing
    Bittremieux, Wout
    Ananth, Varun
    Fondrie, William E.
    Melendez, Carlo
    Pominova, Marina
    Sanders, Justin
    Wen, Bo
    Yilmaz, Melih
    Noble, William S.
    MASS SPECTROMETRY REVIEWS, 2024,
  • [4] An Approach for Peptide Identification by De Novo Sequencing of Mixture Spectra
    Liu, Yi
    Ma, Bin
    Zhang, Kaizhong
    Lajoie, Gilles
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2017, 14 (02) : 326 - 336
  • [5] Multiplex De Novo Sequencing of Peptide Antibiotics
    Mohimani, Hosein
    Liu, Wei-Ting
    Yang, Yu-Liang
    Gaudencio, Susana P.
    Fenical, William
    Dorrestein, Pieter C.
    Pevzner, Pavel A.
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2011, 18 (11) : 1371 - 1381
  • [6] Multiplex De Novo Sequencing of Peptide Antibiotics
    Mohimani, Hosein
    Liu, Wei-Ting
    Yang, Yu-Liang
    Gaudencio, Susana P.
    Fenical, William
    Dorrestein, Pieter C.
    Pevzner, Pavel A.
    RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY, 2011, 6577 : 267 - +
  • [7] An efficient algorithm for de novo peptide sequencing
    Brunetti, S
    Dutta, D
    Liberatori, S
    Mori, E
    Varrazzo, D
    ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, 2005, : 312 - 315
  • [8] An information theoretic approach to rescoring peptides produced by de novo peptide sequencing
    Rose, John R.
    Cleveland, James P.
    Fox, Alvin
    World Academy of Science, Engineering and Technology, 2010, 46 : 200 - 205
  • [9] Antilope-A Lagrangian Relaxation Approach to the de novo Peptide Sequencing Problem
    Andreotti, Sandro
    Klau, Gunnar W.
    Reinert, Knut
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2012, 9 (02) : 385 - 394
  • [10] NovoRank: Refinement for De Novo Peptide Sequencing Based on Spectral Clustering and Deep Learning
    Seo, Jangho
    Choi, Seunghyuk
    Paek, Eunok
    JOURNAL OF PROTEOME RESEARCH, 2024, 24 (02) : 903 - 910