On the integral transform of fractal interpolation functions

被引:0
|
作者
Agathiyan, A. [1 ]
Gowrisankar, A. [1 ]
Fataf, Nur Aisyah Abdul [2 ]
机构
[1] Vellore Inst Technol, Sch Adv Sci, Dept Math, Vellore 632014, Tamil Nadu, India
[2] Univ Pertahanan Nas Malaysia, Cyber Secur & Digital Ind Revolut Ctr, Kuala Lumpur, Malaysia
关键词
Fractal interpolation functions; Composite fractal interpolation functions; Integral transform; Laplace transform; Laplace carson transform;
D O I
10.1016/j.matcom.2023.08.018
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper explores the integral transform of two distinct fractal interpolation functions, namely the linear fractal interpolation function and the hidden variable fractal interpolation function with variable scaling factors. Further, with a particular application of kernel functions, we investigate the integral transform of fractal functions, such as the Laplace transform and the Laplace Carson transform. Moreover, we show that the compositeness of two fractal interpolation functions, f1 in {t8, x8} and f2 in {x8, z8} remains a fractal interpolation function. It also generates iterated function system from given iterated function systems. In addition to this, the study is carried out on the composite linear fractal interpolation function of the integral transform, the Laplace transform, and the Laplace Carson transform. (c) 2023 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:209 / 224
页数:16
相关论文
共 50 条
  • [1] Remarks on the integral transform of non-linear fractal interpolation functions
    Agathiyan, A.
    Gowrisankar, A.
    Fataf, Nur Aisyah Abdul
    Cao, Jinde
    CHAOS SOLITONS & FRACTALS, 2023, 173
  • [2] Integration and Fourier transform of fractal interpolation functions
    Feng, ZG
    Tian, LX
    Jiao, JL
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2005, 13 (01) : 33 - 41
  • [3] Regularity of fractal interpolation functions via wavelet transform
    Prasad, Srijanani Anurag
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2013, 4 (02) : 189 - 202
  • [4] Explicit relation between Fourier transform and fractal dimension of fractal interpolation functions
    A. Agathiyan
    Nur Aisyah Abdul Fataf
    A. Gowrisankar
    The European Physical Journal Special Topics, 2023, 232 : 1077 - 1091
  • [5] Explicit relation between Fourier transform and fractal dimension of fractal interpolation functions
    Agathiyan, A.
    Fataf, Nur Aisyah Abdul
    Gowrisankar, A.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2023, 232 (07): : 1077 - 1091
  • [6] Box dimension and fractional integral of linear fractal interpolation functions
    Ruan, Huo-Jun
    Su, Wei-Yi
    Yao, Kui
    JOURNAL OF APPROXIMATION THEORY, 2009, 161 (01) : 187 - 197
  • [7] CARDINAL INTERPOLATION WITH RADIAL BASIS FUNCTIONS - AN INTEGRAL TRANSFORM APPROACH
    BUHMANN, MD
    MULTIVARIATE APPROXIMATION THEORY IV, 1989, 90 : 41 - 64
  • [8] FRACTAL INTERPOLATION FUNCTIONS ON AFFINE FRACTAL INTERPOLATION CURVES
    Ri, Songil
    Nam, Songmin
    Kim, Hyonchol
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (02)
  • [9] FRACTAL FUNCTIONS AND INTERPOLATION
    BARNSLEY, MF
    CONSTRUCTIVE APPROXIMATION, 1986, 2 (04) : 303 - 329
  • [10] Fractal Calculus on Fractal Interpolation Functions
    Gowrisankar, Arulprakash
    Khalili Golmankhaneh, Alireza
    Serpa, Cristina
    FRACTAL AND FRACTIONAL, 2021, 5 (04)