Phosphorus Defect Mediated Electron Redistribution to Boost Anion Exchange Membrane-Based Alkaline Seawater Electrolysis

被引:86
作者
Guo, Lili [1 ,2 ]
Chi, Jingqi [1 ,3 ]
Cui, Tong [1 ,2 ]
Zhu, Jiawei [1 ,3 ]
Xia, Yanan [1 ,3 ]
Guo, Hailing [2 ]
Lai, Jianping [1 ,4 ]
Wang, Lei [1 ,4 ,5 ]
机构
[1] Qingdao Univ Sci & Technol, Key Lab Ecochem Engn, Int Sci & Technol Cooperat Base Ecochem Engn & Gre, Qingdao 266042, Peoples R China
[2] China Univ Petr East China, Coll Chem Engn, State Key Lab Heavy Oil Proc, Qingdao 266580, Peoples R China
[3] Qingdao Univ Sci & Technol, Coll Chem Engn, Qingdao 266042, Peoples R China
[4] Qingdao Univ Sci & Technol, Coll Chem & Mol Engn, Qingdao 266042, Peoples R China
[5] Qingdao Univ Sci & Technol, Coll Environm & Safety Engn, Qingdao 266042, Peoples R China
基金
中国国家自然科学基金;
关键词
AEM electrolyzer; electron redistribution; NiCoPv; P defects; seawater splitting; OXYGEN EVOLUTION; EFFICIENT; ELECTROCATALYSTS; VACANCIES;
D O I
10.1002/aenm.202400975
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
It is of essential importance to design bifunctional electrocatalysts with excellent performance for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in seawater splitting. Herein, an approach for manipulating electron redistribution in NiCoP treated by P defect (P-v) engineering (NiCoPv@NF) is presented, exhibiting excellent catalytic activities and stability toward HER/OER in alkaline seawater solution. The P-v reduces the surface electrooxidation reconfiguration energy barrier, making it easier to drive the local conversion of crystals to active oxy(hydroxide) in OER. In addition, the Ni site of NiCoPv and the Co site of NiCoOOH are the active sites for HER and OER processes, respectively. In situ generated PO43- adsorbed on the catalyst surface causes spatial repulsion, preventing Cl- corrosion in seawater electrolysis. The seawater AEM electrolyzer using NiCoPv@NF couple achieves excellent performance of high activity (2.43 V at 500 mA cm(-2)) and long-term durability (500 mA cm(-2) over 110 h). The working efficiency of AEM in 1.0 M KOH is as high as 77.0% at 100 mA cm(-2) with the price of per GGE H-2 as low as $ 0.87.
引用
收藏
页数:10
相关论文
共 40 条
[1]   Promoting Oxygen Evolution Reactions through Introduction of Oxygen Vacancies to Benchmark NiFe-OOH Catalysts [J].
Asnavandi, Majid ;
Yin, Yichun ;
Li, Yibing ;
Sun, Chenghua ;
Zhao, Chuan .
ACS ENERGY LETTERS, 2018, 3 (07) :1515-1520
[2]   Phosphorus Vacancies that Boost Electrocatalytic Hydrogen Evolution by Two Orders of Magnitude [J].
Duan, Jingjing ;
Chen, Sheng ;
Ortiz-Ledon, Cesar A. ;
Jaroniec, Mietek ;
Qiao, Shi-Zhang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (21) :8181-8186
[3]   Implications of intercontinental renewable electricity trade for energy systems and emissions (Vol 7, pg 1144, 2022) [J].
Guo, Fei ;
van Ruijven, Bas J. ;
Zakeri, Behnam ;
Zhang, Shining ;
Chen, Xing ;
Liu, Changyi ;
Yang, Fang ;
Krey, Volker ;
Riahi, Keywan ;
Huang, Han ;
Zhou, Yuanbing .
NATURE ENERGY, 2023, 8 (12) :1418-1418
[4]   Torsion strained iridium oxide for efficient acidic water oxidation in proton exchange membrane electrolyzers [J].
Hao, Shaoyun ;
Sheng, Hongyuan ;
Liu, Min ;
Huang, Jinzhen ;
Zheng, Guokui ;
Zhang, Fan ;
Liu, Xiangnan ;
Su, Zhiwei ;
Hu, Jiajun ;
Qian, Yang ;
Zhou, Lina ;
He, Yi ;
Song, Bo ;
Lei, Lecheng ;
Zhang, Xingwang ;
Jin, Song .
NATURE NANOTECHNOLOGY, 2021, 16 (12) :1371-U76
[5]   Functional Bimetal Co-Modification for Boosting Large-Current-Density Seawater Electrolysis by Inhibiting Adsorption of Chloride Ions [J].
Huang, Chuqiang ;
Zhou, Qiancheng ;
Yu, Luo ;
Duan, Dingshuo ;
Cao, Tianyu ;
Qiu, Shunhang ;
Wang, Zhouzhou ;
Guo, Jin ;
Xie, Yuxin ;
Li, Liping ;
Yu, Ying .
ADVANCED ENERGY MATERIALS, 2023, 13 (32)
[6]   A corrosion-resistant RuMoNi catalyst for efficient and long-lasting seawater oxidation and anion exchange membrane electrolyzer [J].
Kang, Xin ;
Yang, Fengning ;
Zhang, Zhiyuan ;
Liu, Heming ;
Ge, Shiyu ;
Hu, Shuqi ;
Li, Shaohai ;
Luo, Yuting ;
Yu, Qiangmin ;
Liu, Zhibo ;
Wang, Qiang ;
Ren, Wencai ;
Sun, Chenghua ;
Cheng, Hui-Ming ;
Liu, Bilu .
NATURE COMMUNICATIONS, 2023, 14 (01)
[7]   Boosting Electrocatalytic Activity of Ru for Acidic Hydrogen Evolution through Hydrogen Spillover Strategy [J].
Li, Jiayuan ;
Tan, Yuan ;
Zhang, Mingkai ;
Gou, Wangyan ;
Zhang, Sai ;
Ma, Yuanyuan ;
Hu, Jun ;
Qu, Yongquan .
ACS ENERGY LETTERS, 2022, 7 (04) :1330-1337
[8]   Oxygen Doping to Optimize Atomic Hydrogen Binding Energy on NiCoP for Highly Efficient Hydrogen Evolution [J].
Liu, Chunlei ;
Zhang, Gong ;
Yu, Li ;
Qu, Jiuhui ;
Liu, Huijuan .
SMALL, 2018, 14 (22)
[9]   High-Performance Alkaline Seawater Electrolysis with Anomalous Chloride Promoted Oxygen Evolution Reaction [J].
Liu, Hao ;
Shen, Wei ;
Jin, Huanyu ;
Xu, Jun ;
Xi, Pinxian ;
Dong, Juncai ;
Zheng, Yao ;
Qiao, Shi-Zhang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (46)
[10]   Nanozyme-Cosmetic Contact Lenses for Ocular Surface Disease Prevention [J].
Liu, Quanyi ;
Zhao, Sheng ;
Zhang, Yihong ;
Fang, Qi ;
Liu, Wanling ;
Wu, Rong ;
Wei, Gen ;
Wei, Hui ;
Du, Yan .
ADVANCED MATERIALS, 2023, 35 (44)