Calogero model for the non-Abelian quantum Hall effect

被引:3
作者
Bourgine, Jean-Emile [1 ]
Matsuo, Yutaka [2 ,3 ,4 ]
机构
[1] Univ Melbourne, Sch Math & Stat, Parkville, Vic 3010, Australia
[2] Univ Tokyo, Dept Phys, Hongo 7-3-1,Bunkyo Ku, Tokyo 1130033, Japan
[3] Univ Tokyo, Transscale Quantum Sci Inst, Hongo 7-3-1,Bunkyo Ku, Tokyo 1130033, Japan
[4] Univ Tokyo, Math & Informat Ctr, Hongo 7-3-1,Bunkyo Ku, Tokyo 1130033, Japan
关键词
INTEGRABLE SYSTEMS; INFINITE SYMMETRY; BRANCHING-RULES; WZW MODELS; COMPUTATION; ALGEBRAS; DUALITY;
D O I
10.1103/PhysRevB.109.155158
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A model of the non-Abelian fractional quantum Hall effect is obtained from the diagonalization of the matrix model proposed by Dorey, Tong, and Turner (DTT). The Hamiltonian is reminiscent of a spin Calogero-Moser model but involves higher-order symmetric representations of the non-Abelian symmetry. We derive the energy spectrum and show that the Hamiltonian has a triangular action on a certain class of wave functions with a free-fermion expression. We deduce the expression of the ground-state eigenfunctions and show that they solve a Knizhnik-Zamolodchikov equation. Finally, we discuss the emergence of Kac-Moody symmetries in the large-N limit using the level-rank duality, and we confirm the results obtained previously by DTT.
引用
收藏
页数:23
相关论文
共 54 条
[1]   THE BRANCHING-RULES OF CONFORMAL EMBEDDINGS [J].
ALTSCHULER, D ;
BAUER, M ;
ITZYKSON, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 132 (02) :349-364
[2]   Non-Abelian braiding of graph vertices in a superconducting processor [J].
Andersen, T. I. ;
Lensky, Y. D. ;
Kechedzhi, K. ;
Drozdov, I. K. ;
Bengtsson, A. ;
Hong, S. ;
Morvan, A. ;
Mi, X. ;
Opremcak, A. ;
Acharya, R. ;
Allen, R. ;
Ansmann, M. ;
Arute, F. ;
Arya, K. ;
Asfaw, A. ;
Atalaya, J. ;
Babbush, R. ;
Bacon, D. ;
Bardin, J. C. ;
Bortoli, G. ;
Bourassa, A. ;
Bovaird, J. ;
Brill, L. ;
Broughton, M. ;
Buckley, B. B. ;
Buell, D. A. ;
Burger, T. ;
Burkett, B. ;
Bushnell, N. ;
Chen, Z. ;
Chiaro, B. ;
Chik, D. ;
Chou, C. ;
Cogan, J. ;
Collins, R. ;
Conner, P. ;
Courtney, W. ;
Crook, A. L. ;
Curtin, B. ;
Debroy, D. M. ;
Del Toro Barba, A. ;
Demura, S. ;
Dunsworth, A. ;
Eppens, D. ;
Erickson, C. ;
Faoro, L. ;
Farhi, E. ;
Fatemi, R. ;
Ferreira, V. S. ;
Burgos, L. F. .
NATURE, 2023, 618 (7964) :264-+
[3]   Chiral correlators of the Ising conformal field theory [J].
Ardonne, Eddy ;
Sierra, German .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (50)
[4]  
BAIS FA, 1987, NUCL PHYS B, V279, P561, DOI 10.1016/0550-3213(87)90010-1
[5]   SPINONS IN CONFORMAL FIELD-THEORY [J].
BERNARD, D ;
PASQUIER, V ;
SERBAN, D .
NUCLEAR PHYSICS B, 1994, 428 (03) :612-628
[6]   YANG-BAXTER EQUATION IN LONG-RANGE INTERACTING SYSTEMS [J].
BERNARD, D ;
GAUDIN, M ;
HALDANE, FDM ;
PASQUIER, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (20) :5219-5236
[7]  
Bernard D, 1994, Arxiv, DOI arXiv:hep-th/9412194
[8]   MANY-BODY SYSTEMS WITH NON-ABELIAN STATISTICS [J].
BLOK, B ;
WEN, XG .
NUCLEAR PHYSICS B, 1992, 374 (03) :615-646
[9]   SPINON BASIS FOR HIGHER-LEVEL SU(2) WZW MODELS [J].
BOUWKNEGT, P ;
LUDWIG, AWW ;
SCHOUTENS, K .
PHYSICS LETTERS B, 1995, 359 (3-4) :304-312
[10]   The S(U(n))over-cap(1) WZW models - Spinon decomposition and yangian structure [J].
Bouwknegt, P ;
Schoutens, K .
NUCLEAR PHYSICS B, 1996, 482 (1-2) :345-372