Calogero model for the non-Abelian quantum Hall effect

被引:1
|
作者
Bourgine, Jean-Emile [1 ]
Matsuo, Yutaka [2 ,3 ,4 ]
机构
[1] Univ Melbourne, Sch Math & Stat, Parkville, Vic 3010, Australia
[2] Univ Tokyo, Dept Phys, Hongo 7-3-1,Bunkyo Ku, Tokyo 1130033, Japan
[3] Univ Tokyo, Transscale Quantum Sci Inst, Hongo 7-3-1,Bunkyo Ku, Tokyo 1130033, Japan
[4] Univ Tokyo, Math & Informat Ctr, Hongo 7-3-1,Bunkyo Ku, Tokyo 1130033, Japan
关键词
INTEGRABLE SYSTEMS; INFINITE SYMMETRY; BRANCHING-RULES; WZW MODELS; COMPUTATION; ALGEBRAS; DUALITY;
D O I
10.1103/PhysRevB.109.155158
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A model of the non-Abelian fractional quantum Hall effect is obtained from the diagonalization of the matrix model proposed by Dorey, Tong, and Turner (DTT). The Hamiltonian is reminiscent of a spin Calogero-Moser model but involves higher-order symmetric representations of the non-Abelian symmetry. We derive the energy spectrum and show that the Hamiltonian has a triangular action on a certain class of wave functions with a free-fermion expression. We deduce the expression of the ground-state eigenfunctions and show that they solve a Knizhnik-Zamolodchikov equation. Finally, we discuss the emergence of Kac-Moody symmetries in the large-N limit using the level-rank duality, and we confirm the results obtained previously by DTT.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Hall viscosity in the non-Abelian quantum Hall matrix model
    Lapa, Matthew F.
    Turner, Carl
    Hughes, Taylor L.
    Tong, David
    PHYSICAL REVIEW B, 2018, 98 (07)
  • [2] Non-Abelian fermionization and fractional quantum Hall transitions
    Hui, Aaron
    Mulligan, Michael
    Kim, Eun-Ah
    PHYSICAL REVIEW B, 2018, 97 (08)
  • [3] Non-Abelian Parton Fractional Quantum Hall Effect in Multilayer Graphene
    Wu, Ying-Hai
    Shi, Tao
    Jain, Jainendra K.
    NANO LETTERS, 2017, 17 (08) : 4643 - 4647
  • [4] Landau-Ginzburg theories of non-Abelian quantum Hall states from non-Abelian bosonization
    Goldman, Hart
    Sohal, Ramanjit
    Fradkin, Eduardo
    PHYSICAL REVIEW B, 2019, 100 (11)
  • [5] Braiding Non-Abelian Quasiholes in Fractional Quantum Hall States
    Wu, Yang-Le
    Estienne, B.
    Regnault, N.
    Bernevig, B. Andrei
    PHYSICAL REVIEW LETTERS, 2014, 113 (11)
  • [6] Bilayer quantum Hall phase transitions and the orbifold non-Abelian fractional quantum Hall states
    Barkeshli, Maissam
    Wen, Xiao-Gang
    PHYSICAL REVIEW B, 2011, 84 (11):
  • [7] Fractionalizing Majorana Fermions: Non-Abelian Statistics on the Edges of Abelian Quantum Hall States
    Lindner, Netanel H.
    Berg, Erez
    Refael, Gil
    Stern, Ady
    PHYSICAL REVIEW X, 2012, 2 (04):
  • [8] Deformed Calogero-Sutherland model and fractional quantum Hall effect
    Atai, Farrokh
    Langmann, Edwin
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (01)
  • [9] Experimental signatures of non-Abelian statistics in clustered quantum Hall states
    Ilan, Roni
    Grosfeld, Eytan
    Schoutens, Kareljan
    Stern, Ady
    PHYSICAL REVIEW B, 2009, 79 (24):
  • [10] Non-abelian 3D bosonization and quantum Hall states
    Radicevic, Dorde
    Tong, David
    Turner, Carl
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (12):