RPA-UNet: A robust approach for arteriovenous fistula ultrasound image segmentation

被引:2
作者
Luo, Kan [1 ,3 ]
Tu, Feifei [1 ,3 ]
Liang, Chaobing [1 ]
Huang, Jing [1 ,3 ]
Li, Jianxing [3 ]
Lin, Renling [1 ,3 ]
Zhu, Jieyi [1 ]
Hong, Dengke [2 ]
机构
[1] Fujian Univ Technol, Sch Elect Elect Engn & Phys, Fuzhou, Peoples R China
[2] Fujian Med Univ, Union Hosp, Dept Vasc Surg, Fuzhou, Fujian, Peoples R China
[3] Fujian Prov Ind Automation Technol Res & Dev Ctr, Fuzhou, Fujian, Peoples R China
关键词
Arteriovenous fistula; Ultrasound images; Image segmentation; UNet; Residual architecture; Pyramidal convolution; Attention mechanism; PREDICTION;
D O I
10.1016/j.bspc.2024.106453
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Accurate segmentation of vessel regions in complex arteriovenous fistula (AVF) ultrasound images, which are characterized by irregular shapes, blurred boundaries, and varied sizes, is still a significant challenge. Inspired by the remarkable performance of deep learning models in various semantic segmentation scenarios, in this paper we proposed a novel model called residual pyramidal attention UNet (RPA-UNet) for AVF ultrasound image segmentation. This model adopts several enhancements such as residual architecture network, pyramidal convolution, attention mechanism, and combined loss function, which collectively improve the model performance in terms of efficient network architecture, multi -scale feature extraction, target region feature activation, and training stability. The effectiveness of RPA-UNet has been validated through experiments on a clinical AVF ultrasound image dataset. IoU, Recall, Dice, and Precision achieved by RPA-UNet are 91.38 %, 97.21 %, 95.29 %, and 93.72 %, respectively. The results showed that the proposed model outperforms other state-of-the-art models such as Fcn32s, UNet, UNet ++, Res-UNet, and Attention-UNet. Additional experiments further prove that the enhancements of RPA-UNet contribute positively to the improvements. Thus, the proposed RPA-UNet has enormous potential for applications in complex AVF ultrasound image segmentation tasks.
引用
收藏
页数:9
相关论文
共 42 条
  • [1] Abdel-Dayem AR, 2005, I C COMP SYST APPLIC
  • [2] Tomographic 3D ultrasound for grading stenosis of superficial femoral artery
    Alzahrani, Adel
    Sultan, Salahaden R.
    Aslam, Mohammed
    [J]. PERFUSION-UK, 2024, 39 (05): : 943 - 947
  • [3] Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved?
    Bernard, Olivier
    Lalande, Alain
    Zotti, Clement
    Cervenansky, Frederick
    Yang, Xin
    Heng, Pheng-Ann
    Cetin, Irem
    Lekadir, Karim
    Camara, Oscar
    Gonzalez Ballester, Miguel Angel
    Sanroma, Gerard
    Napel, Sandy
    Petersen, Steffen
    Tziritas, Georgios
    Grinias, Elias
    Khened, Mahendra
    Kollerathu, Varghese Alex
    Krishnamurthi, Ganapathy
    Rohe, Marc-Michel
    Pennec, Xavier
    Sermesant, Maxime
    Isensee, Fabian
    Jaeger, Paul
    Maier-Hein, Klaus H.
    Full, Peter M.
    Wolf, Ivo
    Engelhardt, Sandy
    Baumgartner, Christian F.
    Koch, Lisa M.
    Wolterink, Jelmer M.
    Isgum, Ivana
    Jang, Yeonggul
    Hong, Yoonmi
    Patravali, Jay
    Jain, Shubham
    Humbert, Olivier
    Jodoin, Pierre-Marc
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) : 2514 - 2525
  • [4] Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017
    Bikbov, Boris
    Purcell, Carrie
    Levey, Andrew S.
    Smith, Mari
    Abdoli, Amir
    Abebe, Molla
    Adebayo, Oladimeji M.
    Afarideh, Mohsen
    Agarwal, Sanjay Kumar
    Agudelo-Botero, Marcela
    Ahmadian, Elham
    Al-Aly, Ziyad
    Alipour, Vahid
    Almasi-Hashiani, Amir
    Al-Raddadi, Rajaa M.
    Alvis-Guzman, Nelson
    Amini, Saeed
    Andrei, Tudorel
    Andrei, Catalina Liliana
    Andualem, Zewudu
    Anjomshoa, Mina
    Arabloo, Jalal
    Ashagre, Alebachew Fasil
    Asmelash, Daniel
    Ataro, Zerihun
    Atout, Maha Moh'd Wahbi
    Ayanore, Martin Amogre
    Badawi, Alaa
    Bakhtiari, Ahad
    Ballew, Shoshana H.
    Balouchi, Abbas
    Banach, Maciej
    Barquera, Simon
    Basu, Sanjay
    Bayih, Mulat Tirfie
    Bedi, Neeraj
    Bello, Aminu K.
    Bensenor, Isabela M.
    Bijani, Ali
    Boloor, Archith
    Borzi, Antonio M.
    Camera, Luis Alberto
    Carrero, Juan J.
    Carvalho, Felix
    Castro, Franz
    Catala-Lopez, Ferran
    Chang, Alex R.
    Chin, Ken Lee
    Chung, Sheng-Chia
    Cirillo, Massimo
    [J]. LANCET, 2020, 395 (10225) : 709 - 733
  • [5] Deep learning robotic guidance for autonomous vascular access
    Chen, Alvin I.
    Balter, Max L.
    Maguire, Timothy J.
    Yarmush, Martin L.
    [J]. NATURE MACHINE INTELLIGENCE, 2020, 2 (02) : 104 - +
  • [6] Intimal Hyperplasia, Stenosis, and Arteriovenous Fistula Maturation Failure in the Hemodialysis Fistula Maturation Study
    Cheung, Alfred K.
    Imrey, Peter B.
    Alpers, Charles E.
    Robbin, Michelle L.
    Radeva, Milena
    Larive, Brett
    Shiu, Yan-Ting
    Allon, Michael
    Dember, Laura M.
    Greene, Tom
    Himmelfarb, Jonathan
    Roy-Chaudhury, Prabir
    Terry, Christi M.
    Vazquez, Miguel A.
    Kusek, John W.
    Feldman, Harold I.
    [J]. JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2017, 28 (10): : 3005 - 3013
  • [7] Automated Segmentation of Common Carotid Artery in Ultrasound Images
    Gagan, J. H.
    Shirsat, Harshit S.
    Mathias, Grissel P.
    Mallya, B. Vaibhav
    Andrade, Jasbon
    Rajagopal, K., V
    Kumar, J. R. Harish
    [J]. IEEE ACCESS, 2022, 10 : 58419 - 58430
  • [8] RF-Next: Efficient Receptive Field Search for Convolutional Neural Networks
    Gao, Shanghua
    Li, Zhong-Yu
    Han, Qi
    Cheng, Ming-Ming
    Wang, Liang
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (03) : 2984 - 3002
  • [9] Quantification of Morphological Features in Non-Contrast-Enhanced Ultrasound Microvasculature Imaging
    Ghavami, Siavash
    Bayat, Mahdi
    Fatemi, Mostafa
    Alizad, Azra
    [J]. IEEE ACCESS, 2020, 8 : 18925 - 18937
  • [10] Using the hough transform to segment ultrasound images of longitudinal and transverse sections of the carotid artery
    Golemati, Spyretta
    Stoitsis, John
    Sifakis, Emmanouil G.
    Balkizas, Thomas
    Nikita, Konstantina S.
    [J]. ULTRASOUND IN MEDICINE AND BIOLOGY, 2007, 33 (12) : 1918 - 1932