Fake News Detection Using Deep Learning: A Systematic Literature Review

被引:3
|
作者
Alnabhan, Mohammad Q. [1 ]
Branco, Paula [1 ]
机构
[1] Univ Ottawa, Elect Engn & Comp Sci, Ottawa, ON, Canada
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Classification algorithms; Systematic literature review; Classification; deep learning; fake news; misinformation; systematic literature review; NEURAL-NETWORK;
D O I
10.1109/ACCESS.2024.3435497
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Nowadays, we witness rapid technological advancements in online communication platforms, with increasing volumes of people using a vast range of communication solutions. The fast flow of information and the enormous number of users opens the door to the publication of non-truthful news, which has the potential to reach many people. Disseminating this news through low- or no-cost channels resulted in a flood of fake news that is difficult to detect by humans. Social media networks are one of these channels that are used to quickly spread this fake news by manipulating it in ways that influence readers in many aspects. That influence appears in a recent example amid the COVID-19 pandemic and various political events such as the recent US presidential elections. Given how this phenomenon impacts society, it is crucial to understand it well and study mechanisms that allow its timely detection. Deep learning (DL) has proven its potential for multiple complex tasks in the last few years with outstanding results. In particular, multiple specialized solutions have been put forward for natural language processing (NLP) tasks. In this paper, we systematically review existing fake news detection (FND) strategies that use DL techniques. We systematically surveyed the existing research articles by investigating the DL algorithms used in the detection process. Our focus then shifts to the datasets utilized in previous research and the effectiveness of the different DL solutions. Special attention was given to the application of strategies for transfer learning and dealing with the class imbalance problem. The effect of these solutions on the detection accuracy is also discussed. Finally, our survey provides an overview of key challenges that remain unsolved in the context of FND.
引用
收藏
页码:114435 / 114459
页数:25
相关论文
共 50 条
  • [21] Fake news and risk management: a systematic literature review
    da Costa, Joao Varela
    Fernandes, Andre
    da Silva, Miguel Mira
    JOURNAL OF RISK RESEARCH, 2024, 27 (12) : 1524 - 1563
  • [22] Deep Ensemble Fake News Detection Model Using Sequential Deep Learning Technique
    Ali, Abdullah Marish
    Ghaleb, Fuad A.
    Al-Rimy, Bander Ali Saleh
    Alsolami, Fawaz Jaber
    Khan, Asif Irshad
    SENSORS, 2022, 22 (18)
  • [23] A Systematic Literature Review and Meta-Analysis of Studies on Online Fake News Detection
    Thompson, Robyn C.
    Joseph, Seena
    Adeliyi, Timothy T.
    INFORMATION, 2022, 13 (11)
  • [24] Systematic Review of Fake News, Propaganda, and Disinformation: Examining Authors, Content, and Social Impact Through Machine Learning
    Plikynas, Darius
    Rizgeliene, Ieva
    Korvel, Grazina
    IEEE ACCESS, 2025, 13 : 17583 - 17629
  • [25] Deep learning approaches for bad smell detection: a systematic literature review
    Alazba, Amal
    Aljamaan, Hamoud
    Alshayeb, Mohammad
    EMPIRICAL SOFTWARE ENGINEERING, 2023, 28 (03)
  • [26] Deep learning approaches for bad smell detection: a systematic literature review
    Amal Alazba
    Hamoud Aljamaan
    Mohammad Alshayeb
    Empirical Software Engineering, 2023, 28
  • [27] Deep learning methods for Fake News detection
    Kresnakova, Viera Maslej
    Sarnovsky, Martin
    Butka, Peter
    IEEE JOINT 19TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND INFORMATICS AND 7TH INTERNATIONAL CONFERENCE ON RECENT ACHIEVEMENTS IN MECHATRONICS, AUTOMATION, COMPUTER SCIENCES AND ROBOTICS (CINTI-MACRO 2019), 2019, : 143 - 148
  • [28] FNDNet - A deep convolutional neural network for fake news detection
    Kaliyar, Rohit Kumar
    Goswami, Anurag
    Narang, Pratik
    Sinha, Soumendu
    COGNITIVE SYSTEMS RESEARCH, 2020, 61 : 32 - 44
  • [29] A systematic literature review and existing challenges toward fake news detection models
    Shah, Minal Nirav
    Ganatra, Amit
    SOCIAL NETWORK ANALYSIS AND MINING, 2022, 12 (01)
  • [30] A systematic literature review and existing challenges toward fake news detection models
    Minal Nirav Shah
    Amit Ganatra
    Social Network Analysis and Mining, 2022, 12