MIPANet: optimizing RGB-D semantic segmentation through multi-modal interaction and pooling attention

被引:0
|
作者
Zhang, Shuai [1 ]
Xie, Minghong [1 ]
机构
[1] Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming, Peoples R China
来源
FRONTIERS IN PHYSICS | 2024年 / 12卷
关键词
RGB-D semantic segmentation; attention mechanism; feature fusion; multi-modal interaction; feature enhancement; INFORMATION; FUSION;
D O I
10.3389/fphy.2024.1411559
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The semantic segmentation of RGB-D images involves understanding objects appearances and spatial relationships within a scene, which necessitates careful consideration of multiple factors. In indoor scenes, the presence of diverse and disorderly objects, coupled with illumination variations and the influence of adjacent objects, can easily result in misclassifications of pixels, consequently affecting the outcome of semantic segmentation. We propose a Multi-modal Interaction and Pooling Attention Network (MIPANet) in response to these challenges. This network is designed to exploit the interactive synergy between RGB and depth modalities, aiming to enhance the utilization of complementary information and improve segmentation accuracy. Specifically, we incorporate a Multi-modal Interaction Module (MIM) into the deepest layers of the network. This module is engineered to facilitate the fusion of RGB and depth information, allowing for mutual enhancement and correction. Moreover, we introduce a Pooling Attention Module (PAM) at various stages of the encoder to enhance the features extracted by the network. The outputs of the PAMs at different stages are selectively integrated into the decoder through a refinement module to improve semantic segmentation performance. Experimental results demonstrate that MIPANet outperforms existing methods on two indoor scene datasets, NYU-Depth V2 and SUN-RGBD, by optimizing the insufficient information interaction between different modalities in RGB-D semantic segmentation. The source codes are available at https://github.com/2295104718/MIPANet.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Self-Enhanced Feature Fusion for RGB-D Semantic Segmentation
    Xiang, Pengcheng
    Yao, Baochen
    Jiang, Zefeng
    Peng, Chengbin
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 3015 - 3019
  • [32] GANet: geometry-aware network for RGB-D semantic segmentation
    Tian, Chunqi
    Xu, Weirong
    Bai, Lizhi
    Yang, Jun
    Xu, Yanjun
    APPLIED INTELLIGENCE, 2025, 55 (06)
  • [33] Based on Multi-Feature Information Attention Fusion for Multi-Modal Remote Sensing Image Semantic Segmentation
    Zhang, Chongyu
    2021 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (IEEE ICMA 2021), 2021, : 71 - 76
  • [34] RGB-D Gate-guided edge distillation for indoor semantic segmentation
    Wenbin Zou
    Yingqing Peng
    Zhengyu Zhang
    Shishun Tian
    Xia Li
    Multimedia Tools and Applications, 2022, 81 : 35815 - 35830
  • [35] M 2RNet: Multi-modal and multi-scale refined network for RGB-D salient object detection
    Fang, Xian
    Jiang, Mingfeng
    Zhu, Jinchao
    Shao, Xiuli
    Wang, Hongpeng
    PATTERN RECOGNITION, 2023, 135
  • [36] CLGFormer: Cross-Level-Guided transformer for RGB-D semantic segmentation
    Li T.
    Zhou Q.
    Wu D.
    Sun M.
    Hu T.
    Multimedia Tools and Applications, 2025, 84 (11) : 9447 - 9469
  • [37] RGB-D Gate-guided edge distillation for indoor semantic segmentation
    Zou, Wenbin
    Peng, Yingqing
    Zhang, Zhengyu
    Tian, Shishun
    Li, Xia
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (25) : 35815 - 35830
  • [38] Multi-level cross-modal interaction network for RGB-D salient object detection
    Huang, Zhou
    Chen, Huai-Xin
    Zhou, Tao
    Yang, Yun-Zhi
    Liu, Bi-Yuan
    NEUROCOMPUTING, 2021, 452 : 200 - 211
  • [39] Adversarial unsupervised domain adaptation for 3D semantic segmentation with multi-modal learning
    Liu, Wei
    Luo, Zhiming
    Cai, Yuanzheng
    Yu, Ying
    Ke, Yang
    Marcato Junior, Jose
    Goncalves, Wesley Nunes
    Li, Jonathan
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 176 : 211 - 221
  • [40] RGB-D Saliency Detection Based on Attention Mechanism and Multi-Scale Cross-Modal Fusion
    Cui Z.
    Feng Z.
    Wang F.
    Liu Q.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2023, 35 (06): : 893 - 902