Deep learning based automatic seizure prediction with EEG time-frequency representation

被引:2
|
作者
Dong, Xingchen [1 ]
He, Landi [1 ]
Li, Haotian [1 ]
Liu, Zhen [2 ]
Shang, Wei [2 ]
Zhou, Weidong [1 ,3 ]
机构
[1] Shandong Univ, Sch Integrated Circuits, Jinan 250100, Peoples R China
[2] Second Hosp Shandong Univ, Dept Intervent Med, Jinan 250033, Peoples R China
[3] Shandong Univ, Shenzhen Inst, Shenzhen 518057, Peoples R China
基金
中国国家自然科学基金;
关键词
Electroencephalography (EEG); Seizure prediction; Vision transformer; Stockwell transform; STOCKWELL TRANSFORM; NETWORK; SIGNALS; CLASSIFICATION; SYSTEMS;
D O I
10.1016/j.bspc.2024.106447
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Automatic seizure prediction is crucial for developing a new therapy for patients suffering from medically intractable epilepsy, possessing important clinical application value. In order to solve the problems of overfitting due to the complexity of deep learning based seizure prediction networks and the susceptibility of EEG features to noise contamination, an automatic seizure prediction model based on Stockwell Transform (S-transform) and Multi-Channel Vision Transformer (MViT) is proposed in this work. The time-frequency representation of multichannel electroencephalography (EEG) signals is obtained by using S-Transform. These time-frequency spectrograms are then compressed and sent into the MViT model for further spatial feature extraction and identification of preictal EEG state. The designed MViT model is lightweight, ensuring efficient feature discriminating ability even with a minimal number of network layers. In view of the persistence of EEG activities, K-of-N strategy is employed to further augment the predictive performance. Experiments on the CHB-MIT database and the SH-SDU clinical database yield segment-based accuracy of 97.57 % and 95.88 % respectively, demonstrating the superiority and potential of the proposed method in seizure prediction.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Epileptic Seizure Detection with Hybrid Time-Frequency EEG Input: A Deep Learning Approach
    Pan, Yayan
    Zhou, Xiaoyu
    Dong, Fanying
    Wu, Jianxiang
    Xu, Yongan
    Zheng, Shilian
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2022, 2022
  • [2] Predicting seizure onset based on time-frequency analysis of EEG signals
    Tamanna, Tasmi
    Rahman, Md Anisur
    Sultana, Samia
    Haque, Mohammad Hasibul
    Parvez, Mohammad Zavid
    CHAOS SOLITONS & FRACTALS, 2021, 145
  • [3] Epileptic EEG Classification by Using Time-Frequency Images for Deep Learning
    Ozdemir, Mehmet Akif
    Cura, Ozlem Karabiber
    Akan, Aydin
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2021, 31 (08)
  • [4] Time-Frequency Analysis of Scalp EEG With Hilbert-Huang Transform and Deep Learning
    Zheng, Jingyi
    Liang, Mingli
    Sinha, Sujata
    Ge, Linqiang
    Yu, Wei
    Ekstrom, Arne
    Hsieh, Fushing
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (04) : 1549 - 1559
  • [5] Semi-Supervised Seizure Prediction Based on Deep Pairwise Representation Alignment of Epileptic EEG Signals
    Qi, Nan
    Piao, Yan
    Wang, Qi
    Li, Xin
    Wang, Yue
    IEEE ACCESS, 2024, 12 : 119056 - 119071
  • [6] A rhythmic encoding approach based on EEG time-frequency image for epileptic seizure detection
    Li, Jia Wen
    Feng, Guan Yuan
    Lv, Ju Jian
    Chen, Rong Jun
    Wang, Lei Jun
    Zeng, Xian Xian
    Yuan, Jun
    Hu, Xiang Lei
    Zhao, Hui Min
    Lu, Xu
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 99
  • [7] Deep learning based efficient epileptic seizure prediction with EEG channel optimization
    Jana, Ranjan
    Mukherjee, Imon
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 68
  • [8] Automatic signal abnormality detection using time-frequency features and machine learning: A newborn EEG seizure case study
    Boashash, Boualem
    Ouelha, Samir
    KNOWLEDGE-BASED SYSTEMS, 2016, 106 : 38 - 50
  • [9] Graph-based EEG approach for depression prediction: integrating time-frequency complexity and spatial topology
    Liu, Wei
    Jia, Kebin
    Wang, Zhuozheng
    FRONTIERS IN NEUROSCIENCE, 2024, 18
  • [10] An efficient automatic modulation recognition using time-frequency information based on hybrid deep learning and bagging approach
    Hazim Obaid, Zahraa
    Mirzaei, Behzad
    Darroudi, Ali
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (04) : 2607 - 2624