STTD: spatial-temporal transformer with double recurrent graph convolutional cooperative network for traffic flow prediction

被引:0
作者
Zeng, Hui [1 ]
Cui, Qiang [1 ]
Huang, XiaoHui [1 ]
Duan, XueWei [1 ]
机构
[1] East China Jiaotong Univ, Dept Informat Engn, Nanchang 330013, Peoples R China
来源
CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS | 2024年 / 27卷 / 09期
基金
中国国家自然科学基金;
关键词
Traffic flow prediction; Temporal and spatial correlations; Graph convolutional network; Spatial-temporal Transformer; DEEP;
D O I
10.1007/s10586-024-04583-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traffic flow prediction is an important part of ITS, accurate traffic flow prediction plays a crucial role in the development of ITS. It can not only effectively avoid traffic problems such as traffic congestion, but also provide a database for other complex tasks. With the increase of population and vehicles, the huge amount of traffic data brings a huge challenge to the accuracy of traffic model prediction. Most of the existing methods use some simple spatial-temporal components and static graph structures, and do not distinguish between normal and abnormal traffic flow signals, which is difficult to capture complex temporal and spatial correlations. To solve this problem, we propose a spatial-temporal Transformer with double recurrent graph convolutional cooperative network (STTDGRU) for traffic flow prediction. The model uses the double graph convolutional gated recurrent module based on dynamic graphs to capture the temporal and spatial correlations, and then uses the spatial-temporal Transformer to capture the temporal and spatial correlations in depth, then predicts more accurate traffic flow by integrating multi-level temporal and spatial features. We also use a residual separation superposition mechanism to separate normal and abnormal traffic flow signals and learn the abnormal signals separately. We conduct extensive experiments on four real datasets to demonstrate the effectiveness of the proposed model and its competitiveness with some current methods.
引用
收藏
页码:12069 / 12089
页数:21
相关论文
共 50 条
  • [41] An improved dynamic Chebyshev graph convolution network for traffic flow prediction with spatial-temporal attention
    Liao, Lyuchao
    Hu, Zhiyuan
    Zheng, Yuxin
    Bi, Shuoben
    Zou, Fumin
    Qiu, Huai
    Zhang, Maolin
    APPLIED INTELLIGENCE, 2022, 52 (14) : 16104 - 16116
  • [42] Spatial-Temporal Graph Neural Network for Traffic Flow Prediction Based on Information Enhanced Transmission
    Ni Q.
    Peng W.
    Zhang Z.
    Zhai Y.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2022, 59 (02): : 282 - 293
  • [43] Gated Recurrent Graph Convolutional Attention Network for Traffic Flow Prediction
    Feng, Xiaoyuan
    Chen, Yue
    Li, Hongbo
    Ma, Tian
    Ren, Yilong
    SUSTAINABILITY, 2023, 15 (09)
  • [44] Multimodal joint prediction of traffic spatial-temporal data with graph sparse attention mechanism and bidirectional temporal convolutional network
    Zhang, Dongran
    Yan, Jiangnan
    Polat, Kemal
    Alhudhaif, Adi
    Li, Jun
    ADVANCED ENGINEERING INFORMATICS, 2024, 62
  • [45] Principal graph embedding convolutional recurrent network for traffic flow prediction
    Han, Yang
    Zhao, Shengjie
    Deng, Hao
    Jia, Wenzhen
    APPLIED INTELLIGENCE, 2023, 53 (14) : 17809 - 17823
  • [46] Principal graph embedding convolutional recurrent network for traffic flow prediction
    Yang Han
    Shengjie Zhao
    Hao Deng
    Wenzhen Jia
    Applied Intelligence, 2023, 53 : 17809 - 17823
  • [47] Network-wide Traffic Flow Prediction Research Based on DTW Algorithm Spatial-temporal Graph Convolution
    Liu Y.-C.
    Li Z.-P.
    Lv C.-P.
    Zhang T.
    Liu Y.
    Jiaotong Yunshu Xitong Gongcheng Yu Xinxi/Journal of Transportation Systems Engineering and Information Technology, 2022, 22 (03): : 147 - 157and178
  • [48] Attention Based Multi-scale Spatial-temporal Fusion Propagation Graph Network for Traffic Flow Prediction
    Tian, Yuxin
    Zhang, Qiliang
    Li, Xiaomeng
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT II, ICIC 2024, 2024, 14876 : 125 - 136
  • [49] Regularized Spatial-Temporal Graph Convolutional Networks for Metro Passenger Flow Prediction
    Gao, Chao
    Liu, Hao
    Huang, Jiajin
    Wang, Zhen
    Li, Xianghua
    Li, Xuelong
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (09) : 11241 - 11255
  • [50] Traffic Flow Prediction Model Based on the Combination of Improved Gated Recurrent Unit and Graph Convolutional Network
    Zhao, Yun
    Han, Xue
    Xu, Xing
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10