STTD: spatial-temporal transformer with double recurrent graph convolutional cooperative network for traffic flow prediction

被引:0
作者
Zeng, Hui [1 ]
Cui, Qiang [1 ]
Huang, XiaoHui [1 ]
Duan, XueWei [1 ]
机构
[1] East China Jiaotong Univ, Dept Informat Engn, Nanchang 330013, Peoples R China
来源
CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS | 2024年 / 27卷 / 09期
基金
中国国家自然科学基金;
关键词
Traffic flow prediction; Temporal and spatial correlations; Graph convolutional network; Spatial-temporal Transformer; DEEP;
D O I
10.1007/s10586-024-04583-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traffic flow prediction is an important part of ITS, accurate traffic flow prediction plays a crucial role in the development of ITS. It can not only effectively avoid traffic problems such as traffic congestion, but also provide a database for other complex tasks. With the increase of population and vehicles, the huge amount of traffic data brings a huge challenge to the accuracy of traffic model prediction. Most of the existing methods use some simple spatial-temporal components and static graph structures, and do not distinguish between normal and abnormal traffic flow signals, which is difficult to capture complex temporal and spatial correlations. To solve this problem, we propose a spatial-temporal Transformer with double recurrent graph convolutional cooperative network (STTDGRU) for traffic flow prediction. The model uses the double graph convolutional gated recurrent module based on dynamic graphs to capture the temporal and spatial correlations, and then uses the spatial-temporal Transformer to capture the temporal and spatial correlations in depth, then predicts more accurate traffic flow by integrating multi-level temporal and spatial features. We also use a residual separation superposition mechanism to separate normal and abnormal traffic flow signals and learn the abnormal signals separately. We conduct extensive experiments on four real datasets to demonstrate the effectiveness of the proposed model and its competitiveness with some current methods.
引用
收藏
页码:12069 / 12089
页数:21
相关论文
共 50 条
  • [21] Spatial-Temporal Multiscale Fusion Graph Neural Network for Traffic Flow Prediction
    Hou, Hongxin
    Ning, Nianwen
    Shi, Huaguang
    Zhou, Yi
    2022 IEEE 7TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION ENGINEERING, ICITE, 2022, : 272 - 277
  • [22] A Hybrid-Convolution Spatial-Temporal Recurrent Network For Traffic Flow Prediction
    Zhang, Xu
    Wen, Shunjie
    Yan, Liang
    Feng, Jiangfan
    Xia, Ying
    COMPUTER JOURNAL, 2024, 67 (01) : 236 - 252
  • [23] Decoupled Graph Spatial-Temporal Transformer Networks for traffic flow forecasting
    Sun, Wei
    Cheng, Rongzhang
    Jiao, Yingqi
    Gao, Junbo
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 148
  • [24] Temporal Multi-Graph Convolutional Network for Traffic Flow Prediction
    Lv, Mingqi
    Hong, Zhaoxiong
    Chen, Ling
    Chen, Tieming
    Zhu, Tiantian
    Ji, Shouling
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (06) : 3337 - 3348
  • [25] Forecasting traffic flow with spatial-temporal convolutional graph attention networks
    Zhang, Xiyue
    Xu, Yong
    Shao, Yizhen
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (18) : 15457 - 15479
  • [26] A New Perspective on Traffic Flow Prediction: A Graph Spatial-Temporal Network with Complex Network Information
    Hu, Zhiqiu
    Shao, Fengjing
    Sun, Rencheng
    ELECTRONICS, 2022, 11 (15)
  • [27] Hybrid Spatial-Temporal Graph Convolutional Network for Long-Term Traffic Flow Forecasting
    Wu, Zihao
    Lou, Ping
    2023 IEEE 8TH INTERNATIONAL CONFERENCE ON BIG DATA ANALYTICS, ICBDA, 2023, : 224 - 229
  • [28] Cross-Attention Fusion Based Spatial-Temporal Multi-Graph Convolutional Network for Traffic Flow Prediction
    Yu, Kun
    Qin, Xizhong
    Jia, Zhenhong
    Du, Yan
    Lin, Mengmeng
    SENSORS, 2021, 21 (24)
  • [29] STHSGCN: Spatial-temporal heterogeneous and synchronous graph convolution network for traffic flow prediction
    Yu, Xian
    Bao, Yin-Xin
    Shi, Quan
    HELIYON, 2023, 9 (09)
  • [30] Based Matrix Fusion Spatial-Temporal Graph Neural Network for Traffic Flow Prediction
    Jing, Xin
    Zhu, Hai
    PROCEEDINGS OF 2023 7TH INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION TECHNOLOGY AND COMPUTER ENGINEERING, EITCE 2023, 2023, : 1171 - 1175