STTD: spatial-temporal transformer with double recurrent graph convolutional cooperative network for traffic flow prediction

被引:0
|
作者
Zeng, Hui [1 ]
Cui, Qiang [1 ]
Huang, XiaoHui [1 ]
Duan, XueWei [1 ]
机构
[1] East China Jiaotong Univ, Dept Informat Engn, Nanchang 330013, Peoples R China
基金
中国国家自然科学基金;
关键词
Traffic flow prediction; Temporal and spatial correlations; Graph convolutional network; Spatial-temporal Transformer; DEEP;
D O I
10.1007/s10586-024-04583-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traffic flow prediction is an important part of ITS, accurate traffic flow prediction plays a crucial role in the development of ITS. It can not only effectively avoid traffic problems such as traffic congestion, but also provide a database for other complex tasks. With the increase of population and vehicles, the huge amount of traffic data brings a huge challenge to the accuracy of traffic model prediction. Most of the existing methods use some simple spatial-temporal components and static graph structures, and do not distinguish between normal and abnormal traffic flow signals, which is difficult to capture complex temporal and spatial correlations. To solve this problem, we propose a spatial-temporal Transformer with double recurrent graph convolutional cooperative network (STTDGRU) for traffic flow prediction. The model uses the double graph convolutional gated recurrent module based on dynamic graphs to capture the temporal and spatial correlations, and then uses the spatial-temporal Transformer to capture the temporal and spatial correlations in depth, then predicts more accurate traffic flow by integrating multi-level temporal and spatial features. We also use a residual separation superposition mechanism to separate normal and abnormal traffic flow signals and learn the abnormal signals separately. We conduct extensive experiments on four real datasets to demonstrate the effectiveness of the proposed model and its competitiveness with some current methods.
引用
收藏
页码:12069 / 12089
页数:21
相关论文
共 50 条
  • [1] Graph Spatial-Temporal Transformer Network for Traffic Prediction
    Zhao, Zhenzhen
    Shen, Guojiang
    Wang, Lei
    Kong, Xiangjie
    BIG DATA RESEARCH, 2024, 36
  • [2] Hierarchical Traffic Flow Prediction Based on Spatial-Temporal Graph Convolutional Network
    Wang, Hanqiu
    Zhang, Rongqing
    Cheng, Xiang
    Yang, Liuqing
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (09) : 16137 - 16147
  • [3] Spatial-Temporal Dilated and Graph Convolutional Network for traffic prediction
    Yang, Guoliang
    Wen, Junlin
    Yu, Dinglin
    Zhang, Shuo
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 802 - 806
  • [4] Spatial-Temporal Graph Attention Gated Recurrent Transformer Network for Traffic Flow Forecasting
    Wu, Di
    Peng, Kai
    Wang, Shangguang
    Leung, Victor C. M.
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (08): : 14267 - 14281
  • [5] An Urban Traffic Knowledge Graph-Driven Spatial-Temporal Graph Convolutional Network for Traffic Flow Prediction
    Yang, Chengbiao
    Qi, Guilin
    PROCEEDINGS OF THE 11TH INTERNATIONAL JOINT CONFERENCE ON KNOWLEDGE GRAPHS, IJCKG 2022, 2022, : 110 - 114
  • [6] Traffic Speed Prediction Based on Spatial-Temporal Dynamic and Static Graph Convolutional Recurrent Network
    Wenxi, Y.A.N.G.
    Ziling, W.A.N.G.
    Tao, C.U.I.
    Yudong, L.U.
    Zhijian, Q.U.
    International Journal of Advanced Computer Science and Applications, 2024, 15 (12): : 518 - 529
  • [7] Spatial-Temporal Dynamic Graph Convolutional Neural Network for Traffic Prediction
    Xiao, Wenjuan
    Wang, Xiaoming
    IEEE ACCESS, 2023, 11 : 97920 - 97929
  • [8] Transfer Learning With Spatial-Temporal Graph Convolutional Network for Traffic Prediction
    Yao, Zhixiu
    Xia, Shichao
    Li, Yun
    Wu, Guangfu
    Zuo, Linli
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (08) : 8592 - 8605
  • [9] Spatial-Temporal Tensor Graph Convolutional Network for Traffic Speed Prediction
    Xu, Xuran
    Zhang, Tong
    Xu, Chunyan
    Cui, Zhen
    Yang, Jian
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (01) : 92 - 103
  • [10] STFGCN: Spatial-temporal fusion graph convolutional network for traffic prediction
    Li, Hao
    Liu, Jie
    Han, Shiyuan
    Zhou, Jin
    Zhang, Tong
    Chen, C. L. Philip
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 255