Imbalanced Regressive Neural Network Model for Whistler-Mode Hiss Waves: Spatial and Temporal Evolution

被引:2
作者
Chu, Xiangning [1 ]
Bortnik, Jacob [2 ]
Shen, Xiao-Chen [3 ]
Ma, Qianli [2 ,3 ]
Li, Wen [3 ]
Ma, Donglai [2 ]
Malaspina, David [1 ,4 ]
Huang, Sheng [3 ]
Hartley, David P. [5 ]
机构
[1] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80303 USA
[2] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA USA
[3] Boston Univ, Ctr Space Phys, Boston, MA USA
[4] Univ Colorado, Astrophys & Planetary Sci Dept, Boulder, CO USA
[5] Univ Iowa, Dept Phys & Astron, Iowa City, IA USA
关键词
imbalanced regression; neural network; hiss; chorus; plasmasphere; RADIATION-BELT ELECTRONS; PLASMASPHERIC HISS; RELATIVISTIC ELECTRONS; CHORUS WAVES; STATISTICAL PROPERTIES; EMBRYONIC SOURCE; OUTER ZONE; ORIGIN; ACCELERATION; GENERATION;
D O I
10.1029/2024JA032761
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Whistler-mode hiss waves are crucial to the dynamics of Earth's radiation belts, particularly in the scattering and loss of energetic electrons and forming the slot region between the inner and outer belts. The generation of hiss waves involves multiple potential mechanisms, which are under active research. Understanding the role of hiss waves in radiation belt dynamics and their generation mechanisms requires analyzing their temporal and spatial evolutions, especially for strong hiss waves. Therefore, we developed an Imbalanced Regressive Neural Network (IR-NN) model for predicting hiss amplitudes. This model addresses the challenge posed by the data imbalance of the hiss data set, which consists of predominantly quiet-time background samples and fewer but significant active-time intense hiss samples. Notably, the IR-NN hiss model excels in predicting strong hiss waves (>100 pT). We investigate the temporal and spatial evolution of hiss wave during a geomagnetic storm on 24-27 October 2017. We show that hiss waves occur within the nominal plasmapause, and follow its dynamically evolving shape. They exhibit intensifications with 1 and 2 hr timescale similar to substorms but with a noticeable time delay. The intensifications begin near dawn and progress toward noon and afternoon. During the storm recovery phase, hiss intensifications may occur in the plume. Additionally, we observe no significant latitudinal dependence of the hiss waves within |MLAT| < 20 degrees. In addition to describing the spatiotemporal evolution of hiss waves, this study highlights the importance of imbalanced regressive methods, given the prevalence of imbalanced data sets in space physics and other real-world applications.
引用
收藏
页数:19
相关论文
共 101 条
  • [1] Spatial Extent and Temporal Correlation of Chorus and Hiss: Statistical Results From Multipoint THEMIS Observations
    Agapitov, O.
    Mourenas, D.
    Artemyev, A.
    Mozer, F. S.
    Bonnell, J. W.
    Angelopoulos, V.
    Shastun, V.
    Krasnoselskikh, V.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2018, 123 (10) : 8317 - 8330
  • [2] Optuna: A Next-generation Hyperparameter Optimization Framework
    Akiba, Takuya
    Sano, Shotaro
    Yanase, Toshihiko
    Ohta, Takeru
    Koyama, Masanori
    [J]. KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 2623 - 2631
  • [3] Multi-Parameter Chorus and Plasmaspheric Hiss Wave Models
    Aryan, Homayon
    Bortnik, Jacob
    Meredith, Nigel P.
    Horne, Richard B.
    Sibeck, David G.
    Balikhin, Michael A.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2021, 126 (01)
  • [4] An impenetrable barrier to ultrarelativistic electrons in the Van Allen radiation belts
    Baker, D. N.
    Jaynes, A. N.
    Hoxie, V. C.
    Thorne, R. M.
    Foster, J. C.
    Li, X.
    Fennell, J. F.
    Wygant, J. R.
    Kanekal, S. G.
    Erickson, P. J.
    Kurth, W.
    Li, W.
    Ma, Q.
    Schiller, Q.
    Blum, L.
    Malaspina, D. M.
    Gerrard, A.
    Lanzerotti, L. J.
    [J]. NATURE, 2014, 515 (7528) : 531 - +
  • [5] Gradual diffusion and punctuated phase space density enhancements of highly relativistic electrons: Van Allen Probes observations
    Baker, D. N.
    Jaynes, A. N.
    Li, X.
    Henderson, M. G.
    Kanekal, S. G.
    Reeves, G. D.
    Spence, H. E.
    Claudepierre, S. G.
    Fennell, J. F.
    Hudson, M. K.
    Thorne, R. M.
    Foster, J. C.
    Erickson, P. J.
    Malaspina, D. M.
    Wygant, J. R.
    Boyd, A.
    Kletzing, C. A.
    Drozdov, A.
    Shprits, Y. Y.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (05) : 1351 - 1358
  • [6] Baker DN, 2013, SCIENCE, V340, P186, DOI [10.1126/science.1233518, 10.1126/science.1231518]
  • [7] Bergstra J, 2013, Paper presented at the proceedings of the 30th international conference on machine learning, proceedings of machine learning research
  • [8] Bergstra J., 2011, Paper Presented at the 25th Annual Conference on Neural Information Processing Systems (NIPS 2011), Granada, Spain
  • [9] Frequency-time spectra of magnetospherically reflecting whistlers in the plasmasphere
    Bortnik, J
    Inan, US
    Bell, TF
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2003, 108 (A1)
  • [10] A unified approach to inner magnetospheric state prediction
    Bortnik, J.
    Li, W.
    Thorne, R. M.
    Angelopoulos, V.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2016, 121 (03) : 2423 - 2430