Symmetric silicon microring resonator optical crossbar array for accelerated inference and training in deep learning

被引:3
作者
Tang, Rui [1 ]
Ohno, Shuhei [1 ]
Tanizawa, Ken [2 ]
Ikeda, Kazuhiro [3 ]
Okano, Makoto [3 ]
Toprasertpong, Kasidit [1 ]
Takagi, Shinichi [1 ]
Takenaka, Mitsuru [1 ]
机构
[1] Univ Tokyo, Dept Elect Engn & Informat Syst, Tokyo 1138656, Japan
[2] Tamagawa Univ, Quantum ICT Res Inst, Tokyo 1948610, Japan
[3] Natl Inst Adv Ind Sci & Technol, Tsukuba 3058568, Japan
基金
日本学术振兴会; 日本科学技术振兴机构;
关键词
PHOTONICS;
D O I
10.1364/PRJ.520518
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Photonic integrated circuits are emerging as a promising platform for accelerating matrix multiplications in deep learning, leveraging the inherent parallel nature of light. Although various schemes have been proposed and demonstrated to realize such photonic matrix accelerators, the in situ training of artificial neural networks using photonic accelerators remains challenging due to the difficulty of direct on-chip backpropagation on a photonic chip. In this work, we propose a silicon microring resonator (MRR) optical crossbar array with a symmetric structure that allows for simple on-chip backpropagation, potentially enabling the acceleration of both the inference and training phases of deep learning. We demonstrate a 4 x 4 circuit on a Si-on-insulator platform and use it to perform inference tasks of a simple neural network for classifying iris flowers, achieving a classification accuracy of 93.3%. Subsequently, we train the neural network using simulated on-chip backpropagation and achieve an accuracy of 91.1% in the same inference task after training. Furthermore, we simulate a convolutional neural network for handwritten digit recognition, using a 9 x 9 MRR crossbar array to perform the convolution operations. This work contributes to the realization of compact and energy-efficient photonic accelerators for deep learning. (c) 2024 Chinese Laser Press
引用
收藏
页码:1681 / 1688
页数:8
相关论文
共 38 条
[1]  
Bandyopadhyay S, 2022, Arxiv, DOI arXiv:2208.01623
[2]   Silicon microring resonators [J].
Bogaerts, Wim ;
De Heyn, Peter ;
Van Vaerenbergh, Thomas ;
De Vos, Katrien ;
Selvaraja, Shankar Kumar ;
Claes, Tom ;
Dumon, Pieter ;
Bienstman, Peter ;
Van Thourhout, Dries ;
Baets, Roel .
LASER & PHOTONICS REVIEWS, 2012, 6 (01) :47-73
[3]   All-analog photoelectronic chip for high-speed vision tasks [J].
Chen, Yitong ;
Nazhamaiti, Maimaiti ;
Xu, Han ;
Meng, Yao ;
Zhou, Tiankuang ;
Li, Guangpu ;
Fan, Jingtao ;
Wei, Qi ;
Wu, Jiamin ;
Qiao, Fei ;
Fang, Lu ;
Dai, Qionghai .
NATURE, 2023, 623 (7985) :48-+
[4]   Optimal design for universal multiport interferometers [J].
Clements, William R. ;
Humphreys, Peter C. ;
Metcalf, Benjamin J. ;
Kolthammer, W. Steven ;
Walmsley, Ian A. .
OPTICA, 2016, 3 (12) :1460-1465
[5]   Higher-dimensional processing using a photonic tensor core with continuous-time data [J].
Dong, Bowei ;
Aggarwal, Samarth ;
Zhou, Wen ;
Ali, Utku Emre ;
Farmakidis, Nikolaos ;
Lee, June Sang ;
He, Yuhan ;
Li, Xuan ;
Kwong, Dim-Lee ;
Wright, C. D. ;
Pernice, Wolfram H. P. ;
Bhaskaran, H. .
NATURE PHOTONICS, 2023, 17 (12) :1080-+
[6]   Ultra-low-energy programmable non-volatile silicon photonics based on phase-change materials with graphene heaters [J].
Fang, Zhuoran ;
Chen, Rui ;
Zheng, Jiajiu ;
Khan, Asir Intisar ;
Neilson, Kathryn M. ;
Geiger, Sarah J. ;
Callahan, Dennis M. ;
Moebius, Michael G. ;
Saxena, Abhi ;
Chen, Michelle E. ;
Rios, Carlos ;
Hu, Juejun ;
Pop, Eric ;
Majumdar, Arka .
NATURE NANOTECHNOLOGY, 2022, 17 (08) :842-+
[7]   Parallel convolutional processing using an integrated photonic tensor core [J].
Feldmann, J. ;
Youngblood, N. ;
Karpov, M. ;
Gehring, H. ;
Li, X. ;
Stappers, M. ;
Le Gallo, M. ;
Fu, X. ;
Lukashchuk, A. ;
Raja, A. S. ;
Liu, J. ;
Wright, C. D. ;
Sebastian, A. ;
Kippenberg, T. J. ;
Pernice, W. H. P. ;
Bhaskaran, H. .
NATURE, 2021, 589 (7840) :52-+
[8]   A Coherent Photonic Crossbar for Scalable Universal Linear Optics [J].
Giamougiannis, George ;
Tsakyridis, Apostolos ;
Ma, Yangjin ;
Totovic, Angelina ;
Moralis-Pegios, Miltiadis ;
Lazovsky, David ;
Pleros, Nikos .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2023, 41 (08) :2425-2442
[9]   Analog nanophotonic computing going practical: silicon photonic deep learning engines for tiled optical matrix multiplication with dynamic precision [J].
Giamougiannis, George ;
Tsakyridis, Apostolos ;
Moralis-Pegios, Miltiadis ;
Pappas, Christos ;
Kirtas, Manos ;
Passalis, Nikolaos ;
Lazovsky, David ;
Tefas, Anastasios ;
Pleros, Nikos .
NANOPHOTONICS, 2023, 12 (05) :963-973
[10]   Demonstration of scalable microring weight bank control for large-scale photonic integrated circuits [J].
Huang, Chaoran ;
Bilodeau, Simon ;
de Lima, Thomas Ferreira ;
Tait, Alexander N. ;
Ma, Philip Y. ;
Blow, Eric C. ;
Jha, Aashu ;
Peng, Hsuan-Tung ;
Shastri, Bhavin J. ;
Prucnal, Paul R. .
APL PHOTONICS, 2020, 5 (04)