FIXED POINTS OF G-MONOTONE MAPPINGS IN METRIC AND MODULAR SPACES

被引:0
作者
Quan, Dau Hong [1 ,2 ]
Wisnicki, Andrzej [3 ]
机构
[1] Univ Natl Educ Comission, Dept Math, PL-30084 Krakow, Poland
[2] Vinh Univ, Dept Math, 182 Le Duan, Vinh, Nghe An, Vietnam
[3] Univ Life Sci Lublin, Univ Life Sci Lublin, PL-20950 Lublin, Poland
关键词
Monotone mapping; nonexpansive mapping; fixed point; PARTIALLY ORDERED SETS; THEOREMS;
D O I
10.12775/TMNA.2024.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
. Let C be a bounded, closed and convex subset of a reflexive metric space with a digraph G such that G-intervals along walks are closed and convex. In the main theorem we show that if T : C -+ C is a monotone G-nonexpansive mapping and there exists c is an element of C such that Tc is an element of [c,-+)G, then T has a fixed point provided for each a is an element of C, [a, a]G has the fixed point property for nonexpansive mappings. In particular, it gives an essential generalization of the Dehaish-Khamsi theorem concerning partial orders in complete uniformly convex hyperbolic metric spaces. Some counterparts of this result for modular spaces, and for commutative families of mappings are given too.
引用
收藏
页码:167 / 184
页数:18
相关论文
共 19 条
  • [1] Fixed point theorems in modular vector spaces
    Abdou, Afrah A. N.
    Khamsi, Mohamed A.
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (08): : 4046 - 4057
  • [2] Abdullatif B., 2016, Fixed Point Theory Appl., V2016, P1
  • [3] Fixed points of monotone nonexpansive mappings with a graph
    Alfuraidan, Monther Rashed
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2015,
  • [4] Bang-Jensen J, 2009, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-1-84800-998-1_1
  • [5] Diestel R., 2012, Graph Theory, V173, DOI [10.1007/978-3-662-53622-3, DOI 10.1007/978-3-662-53622-3]
  • [6] ESPINOLA R., 2018, B POLISH ACAD SCI MA, V66, P1, DOI DOI 10.4064/BA8120-1-2018
  • [7] Jachymski J, 2008, P AM MATH SOC, V136, P1359
  • [8] Uniformly Convex Metric Spaces
    Kell, Martin
    [J]. ANALYSIS AND GEOMETRY IN METRIC SPACES, 2014, 2 (01): : 359 - 380
  • [9] Inequalities in metric spaces with applications
    Khamsi, M. A.
    Khan, A. R.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (12) : 4036 - 4045
  • [10] KHAMSI M.A., 1994, MATH JPN, V41, P1