Gas inflows from cloud to core scales in G332.83-0.55: Hierarchical hub-filament structures and tide-regulated gravitational collapse

被引:8
作者
Zhou, J. W. [1 ]
Dib, S. [2 ]
Juvela, M. [3 ]
Sanhueza, P. [4 ]
Wyrowski, F. [1 ]
Liu, T. [5 ]
Menten, K. M. [1 ]
机构
[1] Max Planck Inst Radioastron, Hugel 69, DE-53121 Bonn, Germany
[2] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany
[3] Univ Helsinki, Dept Phys, POB 64, Helsinki 00014, Finland
[4] Natl Inst Nat Sci, Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan
[5] Chinese Acad Sci, Shanghai Astron Observ, 80 Nandan Rd, Shanghai 200030, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
stars: formation; stars: imaging; stars: protostars; ISM: clouds; ISM: kinematics and dynamics; ISM: structure; ALMA 3-MILLIMETER OBSERVATIONS; STAR-FORMING REGIONS; MOLECULAR CLOUD; INFALLING ENVELOPE; CLUSTER-FORMATION; MASSIVE STARS; ACCRETION; FRAGMENTATION; DISCOVERY; PRESSURE;
D O I
10.1051/0004-6361/202449514
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The massive star-forming region G332.83-0.55 contains at least two levels of hub-filament structures. The hub-filament structures may form through the "gravitational focusing" process. High-resolution LAsMA and ALMA observations can directly trace the gas inflows from cloud to core scales. We investigated the effects of shear and tides from the protocluster on the surrounding local dense gas structures. Our results seem to deny the importance of shear and tides from the protocluster. However, for a gas structure, it bears the tidal interactions from all external material, not only the protocluster. To fully consider the tidal interactions, we derived the tide field according to the surface density distribution. Then, we used the average strength of the external tidal field of a structure to measure the total tidal interactions that are exerted on it. For comparison, we also adopted an original pixel-by-pixel computation to estimate the average tidal strength for each structure. Both methods give comparable results. After considering the total tidal interactions, for the scaling relation between the velocity dispersion sigma, the effective radius R, and the column density N of all the structures, the slope of the sigma - N * R relation changes from 0.20 +/- 0.04 to 0.52 +/- 0.03, close to 0.5 of the pure free-fall gravitational collapse, and the correlation also becomes stronger. Thus, the deformation due to the external tides can effectively slow down the pure free-fall gravitational collapse of gas structures. The external tide tries to tear up the structure, but the external pressure on the structure prevents this process. The counterbalance between the external tide and external pressure hinders the free-fall gravitational collapse of the structure, which can also cause the pure free-fall gravitational collapse to be slowed down. These mechanisms can be called "tide-regulated gravitational collapse".
引用
收藏
页数:11
相关论文
共 65 条
  • [1] Six myths on the virial theorem for interstellar clouds
    Ballesteros-Paredes, Javier
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2006, 372 (01) : 443 - 449
  • [2] New maser species tracing spiral-arm accretion flows in a high-mass young stellar object
    Chen, Xi
    Sobolev, Andrej M.
    Ren, Zhi-Yuan
    Parfenov, Sergey
    Breen, Shari L.
    Ellingsen, Simon P.
    Shen, Zhi-Qiang
    Li, Bin
    MacLeod, Gordon C.
    Baan, Willem
    Brogan, Crystal
    Hirota, Tomoya
    Hunter, Todd R.
    Linz, Hendrik
    Menten, Karl
    Sugiyama, Koichiro
    Stecklum, Bringfried
    Gong, Yan
    Zheng, Xingwu
    [J]. NATURE ASTRONOMY, 2020, 4 (12) : 1170 - 1176
  • [3] Fragmentation in filamentary molecular clouds
    Contreras, Yanett
    Garay, Guido
    Rathborne, Jill M.
    Sanhueza, Patricio
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 456 (02) : 2041 - 2051
  • [4] The ATLASGAL survey: distribution of cold dust in the Galactic plane Combination with Planck data
    Csengeri, T.
    Weiss, A.
    Wyrowski, F.
    Menten, K. M.
    Urquhart, J. S.
    Leurini, S.
    Schuller, F.
    Beuther, H.
    Bontemps, S.
    Bronfman, L.
    Henning, Th
    Schneider, N.
    [J]. ASTRONOMY & ASTROPHYSICS, 2016, 585
  • [5] New Insights into the H ii Region G18.88-0.49: Hub-Filament System and Accreting Filaments
    Dewangan, L. K.
    Ojha, D. K.
    Sharma, Saurabh
    del Palacio, S.
    Bhadari, N. K.
    Das, A.
    [J]. ASTROPHYSICAL JOURNAL, 2020, 903 (01)
  • [6] The evolution of the internal structure of massive star-forming regions in the Milky Way as revealed by ALMA
    Dib, Sami
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 524 (02) : 1625 - 1633
  • [7] The virial balance of clumps and cores in molecular clouds
    Dib, Sami
    Kim, Jongsoo
    Vazquez-Semadeni, Enrique
    Burkert, Andreas
    Shadmehri, Mohsen
    [J]. ASTROPHYSICAL JOURNAL, 2007, 661 (01) : 262 - 284
  • [8] THE LESSER ROLE OF SHEAR IN GALACTIC STAR FORMATION: INSIGHT FROM THE GALACTIC RING SURVEY
    Dib, Sami
    Helou, George
    Moore, Toby J. T.
    Urquhart, James S.
    Dariush, Ali
    [J]. ASTROPHYSICAL JOURNAL, 2012, 758 (02)
  • [10] SILCC-Zoom: the dynamic balance in molecular cloud substructures
    Ganguly, Shashwata
    Walch, S.
    Clarke, S. D.
    Seifried, D.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 528 (02) : 3630 - 3657