Simultaneously Recovering Multi-Person Meshes and Multi-View Cameras With Human Semantics

被引:3
作者
Huang, Buzhen [1 ,2 ]
Ju, Jingyi [1 ,2 ]
Shu, Yuan [1 ,2 ]
Wang, Yangang [1 ,2 ]
机构
[1] Southeast Univ, Key Lab Measurement & Control Complex Syst Engn, Minist Educ, Nanjing 210096, Peoples R China
[2] Southeast Univ, Sch Automat, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
Cameras; Calibration; Semantics; Optimization; Three-dimensional displays; Dynamics; Noise measurement; Multi-person mesh recovery; camera calibration; motion prior and cross-view correspondence; MARKERLESS MOTION CAPTURE; POSE ESTIMATION; CALIBRATION; TRACKING; POINTS; SHAPE;
D O I
10.1109/TCSVT.2023.3328371
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Dynamic multi-person mesh recovery has broad applications in sports broadcasting, virtual reality, and video games. However, current multi-view frameworks rely on a time-consuming camera calibration procedure. In this work, we focus on multi-person motion capture with uncalibrated cameras, which mainly faces two challenges: one is that inter-person interactions and occlusions introduce inherent ambiguities for both camera calibration and motion capture; the other is that a lack of dense correspondences can be used to constrain sparse camera geometries in a dynamic multi-person scene. Our key idea is to incorporate motion prior knowledge to simultaneously estimate camera parameters and human meshes from noisy human semantics. We first utilize human information from 2D images to initialize intrinsic and extrinsic parameters. Thus, the approach does not rely on any other calibration tools or background features. Then, a pose-geometry consistency is introduced to associate the detected humans from different views. Finally, a latent motion prior is proposed to refine the camera parameters and human motions. Experimental results show that accurate camera parameters and human motions can be obtained through a one-step reconstruction. The code are publicly available at https://github.com/boycehbz/DMMR.
引用
收藏
页码:4229 / 4242
页数:14
相关论文
共 81 条
[1]   Bilinear Spatiotemporal Basis Models [J].
Akhter, Ijaz ;
Simon, Tomas ;
Khan, Sohaib ;
Matthews, Iain ;
Sheikh, Yaser .
ACM TRANSACTIONS ON GRAPHICS, 2012, 31 (02) :1-12
[2]   An Integrated Platform for Live 3D Human Reconstruction and Motion Capturing [J].
Alexiadis, Dimitrios S. ;
Chatzitofis, Anargyros ;
Zioulis, Nikolaos ;
Zoidi, Olga ;
Louizis, Georgios ;
Zarpalas, Dimitrios ;
Daras, Petros .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2017, 27 (04) :798-813
[3]   Pose-Guided Tracking-by-Detection: Robust Multi-Person Pose Tracking [J].
Bao, Qian ;
Liu, Wu ;
Cheng, Yuhao ;
Zhou, Boyan ;
Mei, Tao .
IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 :161-175
[4]   3D Pictorial Structures Revisited: Multiple Human Pose Estimation [J].
Belagiannis, Vasileios ;
Amin, Sikandar ;
Andriluka, Mykhaylo ;
Schiele, Bernt ;
Navab, Nassir ;
Ilic, Slobodan .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (10) :1929-1942
[5]   3D Pictorial Structures for Multiple Human Pose Estimation [J].
Belagiannis, Vasileios ;
Amin, Sikandar ;
Andriluka, Mykhaylo ;
Schiele, Bernt ;
Navab, Nassir ;
Ilic, Slobodan .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :1669-1676
[6]   Camera Calibration from Dynamic Silhouettes Using Motion Barcodes [J].
Ben-Artzi, Gil ;
Kasten, Yoni ;
Peleg, Shmuel ;
Werman, Michael .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :4095-4103
[7]   Keep It SMPL: Automatic Estimation of 3D Human Pose and Shape from a Single Image [J].
Bogo, Federica ;
Kanazawa, Angjoo ;
Lassner, Christoph ;
Gehler, Peter ;
Romero, Javier ;
Black, Michael J. .
COMPUTER VISION - ECCV 2016, PT V, 2016, 9909 :561-578
[8]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[9]  
Bridgeman Lewis, 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Proceedings, P2487, DOI 10.1109/CVPRW.2019.00304
[10]   Automatic Calibration of Stationary Surveillance Cameras in the Wild [J].
Brouwers, Guido M. Y. E. ;
Zwemer, Matthijs H. ;
Wijnhoven, Rob G. J. ;
de With, Peter H. N. .
COMPUTER VISION - ECCV 2016 WORKSHOPS, PT II, 2016, 9914 :743-759