Spaces of generators for the 2 x 2 complex matrix algebra

被引:0
作者
Gant, W. S. [1 ]
Williams, Ben [1 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
来源
NEW YORK JOURNAL OF MATHEMATICS | 2024年 / 30卷
基金
加拿大自然科学与工程研究理事会;
关键词
Matrix algebras; spaces of generators; generators of Azumaya algberas;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies the space of r-tuples of 2x2 complex matrices that generate the full matrix algebra, considered up to change-of-basis. We show that when r is 2, this space is homotopy equivalent to the quotient of a product of a circle and a sphere by an involution. When r is greater than 2, we determine the rational cohomology of the space in degrees less than 4r - 6. As an application, we use the machinery of [5] to prove that for all natural numbers d, there exists a ring R of Krull dimension d and a degree-2 Azumaya algebra A over R that cannot be generated by fewer than 2left perpendiculard/4right perpendicular+ 2 elements.
引用
收藏
页码:756 / 773
页数:18
相关论文
共 16 条
[1]   ON AZUMAYA ALGEBRAS AND FINITE DIMENSIONAL REPRESENTATIONS OF RINGS [J].
ARTIN, M .
JOURNAL OF ALGEBRA, 1969, 11 (04) :532-&
[2]  
BROWN EH, 1982, P AM MATH SOC, V85, P283
[3]  
Edidin D, 1998, INVENT MATH, V131, P595, DOI 10.1007/s002220050214
[4]   ON THE NUMBER OF GENERATORS OF AN ALGEBRA OVER A COMMUTATIVE RING [J].
First, Uriya A. ;
Reichstein, Zinovy ;
Williams, Ben .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (10) :7277-7321
[5]   On the number of generators of an algebra [J].
First, Uriya A. ;
Reichstein, Zinovy .
COMPTES RENDUS MATHEMATIQUE, 2017, 355 (01) :5-9
[6]   SIMULTANEOUS SIMILARITY OF MATRICES [J].
FRIEDLAND, S .
ADVANCES IN MATHEMATICS, 1983, 50 (03) :189-265
[7]  
Horn R.A., 1985, Matrix Analysis
[8]  
HUISMAN JOHANNES, 2016, Tangent bundle of sphere as a complex manifold
[9]  
LEBRUYN L, 1987, MEM AM MATH SOC, V66, P1
[10]  
Lee JohnM., 2012, Introduction to smooth manifolds, V218, DOI [DOI 10.1007/978-1-4419-9982-5, 10.1007/978-1-4419-9982-5]