Benchmark Performance of the Multivariate Polynomial Public Key Encapsulation Mechanism

被引:2
作者
Kuang, Randy [1 ]
Perepechaenko, Maria [1 ]
Toth, Ryan [1 ]
Barbeau, Michel [2 ]
机构
[1] Quantropi Inc, Ottawa, ON, Canada
[2] Carleton Univ, Sch Comp Sci, Ottawa, ON, Canada
来源
RISKS AND SECURITY OF INTERNET AND SYSTEMS, CRISIS 2022 | 2023年 / 13857卷
关键词
Post-Quantum Cryptography; Public-Key Cryptography; PQC; Key Encapsulation Mechanism; KEM; Multivariate Polynomials; PQC Performance;
D O I
10.1007/978-3-031-31108-6_18
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents the results of benchmarking the quantum-safe Multivariate Public Key Cryptosystem (MPPK) key encapsulation mechanism for quadratic solvable univariate polynomials. We used a benchmarking tool containing implementations of the four NIST Post-Quantum Cryptography (PQC) finalists: Kyber, McEliece, NTRU, and Saber. The benchmark demonstrates that the performance of MPPK is comparable with that of the four PQC algorithms, offering relatively fast key generation and small key sizes. Key encapsulation and decapsulation performance are comparable with the PQC schemes, with room for improvement.
引用
收藏
页码:239 / 255
页数:17
相关论文
共 18 条
[1]  
Avanzi Roberto, 2017, NIST PQC Round, V2, P1
[2]   INHERENT INTRACTABILITY OF CERTAIN CODING PROBLEMS [J].
BERLEKAMP, ER ;
MCELIECE, RJ ;
VANTILBORG, HCA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1978, 24 (03) :384-386
[3]  
Bernstein D.J, 2009, POSTQUANTUM CRYPTOGR
[4]   CHARACTER SUMS AND DETERMINISTIC POLYNOMIAL ROOT FINDING IN FINITE FIELDS [J].
Bourgain, Jean ;
Konyagin, Sergei V. ;
Shparlinski, Igor E. .
MATHEMATICS OF COMPUTATION, 2015, 84 (296) :2969-2977
[5]  
Ding J., 2009, POSTQUANTUM CRYPTOGR, P193, DOI DOI 10.1007/978-3-540-88702-76
[6]  
Garey M. R., 1979, Computers and intractability. A guide to the theory of NP-completeness
[7]  
Hoffstein J., 1998, Algorithmic Number Theory. Third International Symposium, ANTS-III. Proceedings, P267, DOI 10.1007/BFb0054868
[8]   A new post-quantum multivariate polynomial public key encapsulation algorithm [J].
Kuang, Randy ;
Perepechaenko, Maria ;
Barbeau, Michel .
QUANTUM INFORMATION PROCESSING, 2022, 21 (10)
[9]   Indistinguishability and Non-deterministic Encryption of the Quantum Safe Multivariate Polynomial Public Key Cryptographic System [J].
Kuang, Randy ;
Barbeau, Michel .
2021 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2021,
[10]   A Deterministic Polynomial Public Key Algorithm over a Prime Galois Field GF(p) [J].
Kuang, Randy .
2021 2ND ASIA CONFERENCE ON COMPUTERS AND COMMUNICATIONS (ACCC 2021), 2021, :79-88