Intelligent prediction model of a polymer fracture grouting effect based on a genetic algorithm-optimized back propagation neural network

被引:8
作者
Liang, Jiasen [1 ,2 ]
Du, Xueming [1 ,2 ]
Fang, Hongyuan [1 ,2 ]
Li, Bin [1 ,2 ]
Wang, Niannian [1 ,2 ]
Di, Danyang [1 ,2 ]
Xue, Binghan [1 ,2 ]
Zhai, Kejie [1 ,2 ]
Wang, Shanyong [3 ]
机构
[1] Zhengzhou Univ, Sch Water Conservancy & Transportat, Zhengzhou 450001, Henan, Peoples R China
[2] Zhengzhou Univ, Yellow River Lab, Zhengzhou 450001, Henan, Peoples R China
[3] Univ Newcastle, Prior Res Ctr Geotech Sci & Engn, Sch Engn, Callaghan, NSW 2308, Australia
关键词
Polymer Grouting; Prediction Model; Genetic Algorithm; Fractures; Trenchless Technology; UNCONFINED COMPRESSIVE STRENGTH; TUNNEL;
D O I
10.1016/j.tust.2024.105781
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Polymer grouting can effectively improve the stability of surrounding rock fractures. However, in practical construction, it is difficult to judge the degree of coupling between the slurry and the rock, and the effective grouting range after grouting. Therefore, early prediction of the effect of grouting on the surrounding rock is crucial. In this paper, a new artificial intelligence method is proposed to predict the polymer fracture grouting effect. The genetic algorithm optimized back propagation neural network (GA-BP) is employed to construct an intelligent prediction model. To acquire a substantial dataset for constructing the model, an easily assembled/ disassembled test apparatus for polymer fracture grouting is designed. The maximum coupling degree of the fractures and slurry diffusion distance are chosen as the evaluation metrics for the grouting effectiveness. The influences of the fracture characteristic parameters and grouting volume on the grouting effect are investigated. Furthermore, a comprehensive analysis is conducted on the spatiotemporal diffusion characteristics and slurryrock coupling mechanism of polymer grouting. Compared to traditional BP neural networks, and three other machine learning algorithms (decision trees, random forests and gradient boosting decision trees), the GA-BP model outperforms them in terms of R2 (coefficient of determination), MSE (mean squared error), MBE (mean bias error), MAE (mean absolute error) and RMSE (root mean squared error) in both the test and training sets. The GA algorithm significantly improves the accuracy and robustness of the prediction model. The optimized model demonstrates significant accuracy in predicting grouting results and assessing efficiency, providing a practical reference for grouting construction.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Prediction of Yak Weight Based on BP Neural Network Optimized by Genetic Algorithm
    He, Jie
    Zhang, Yu-an
    Li, Dan
    Chen, Zhanqi
    Song, Weifang
    Song, Rende
    ADVANCES IN NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, ICNC-FSKD 2022, 2023, 153 : 307 - 316
  • [32] Simulation of the Ozone Concentration in Three Regions of Xinjiang, China, Using a Genetic Algorithm-Optimized BP Neural Network Model
    Zhao, Qilong
    Jiang, Kui
    Talifu, Dilinuer
    Gao, Bo
    Wang, Xinming
    Abulizi, Abulikemu
    Zhang, Xiaohui
    Liu, Bowen
    ATMOSPHERE, 2023, 14 (01)
  • [33] Parameters Optimization of Back Propagation Neural Network Based on Memetic Algorithm Coupled with Genetic Algorithm
    Li, Qiang
    Zhang, Xiaotong
    Rigat, Azzeddine
    Li, Yiping
    IEEE 12TH INT CONF UBIQUITOUS INTELLIGENCE & COMP/IEEE 12TH INT CONF ADV & TRUSTED COMP/IEEE 15TH INT CONF SCALABLE COMP & COMMUN/IEEE INT CONF CLOUD & BIG DATA COMP/IEEE INT CONF INTERNET PEOPLE AND ASSOCIATED SYMPOSIA/WORKSHOPS, 2015, : 1359 - 1364
  • [34] Research on the safety early warning of Dangerous Chemicals based on Sparrow Search Algorithm and Genetic Algorithm-Optimized BP Neural Network
    Li, Pan
    Guo, Jian
    Zhu, Baikang
    Hong, Bingyuan
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON ALGORITHMS, SOFTWARE ENGINEERING, AND NETWORK SECURITY, ASENS 2024, 2024, : 696 - 699
  • [35] Genetic Algorithm-Optimized Long Short-Term Memory Network for Stock Market Prediction
    Chung, Hyejung
    Shin, Kyung-shik
    SUSTAINABILITY, 2018, 10 (10)
  • [36] Prediction model for suicide based on back propagation neural network and multilayer perceptron
    Lyu, Juncheng
    Shi, Hong
    Zhang, Jie
    Norvilitis, Jill
    FRONTIERS IN NEUROINFORMATICS, 2022, 16
  • [37] Genetic Algorithm Optimized Training for Neural Network Spectrum Prediction
    Yang, Jian
    Zhao, Hangsheng
    Chen, Xi
    2016 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC), 2016, : 2949 - 2954
  • [38] Prediction of Drilling Efficiency for Rotary Drilling Rig Based on an Improved Back Propagation Neural Network Algorithm
    Jia, Cunde
    Zhang, Junyong
    Kong, Xiangdong
    Xu, Hongyu
    Jiang, Wenguang
    Li, Shengbin
    Jiang, Yunhong
    Ai, Chao
    MACHINES, 2024, 12 (07)
  • [39] An Optimized Method for Electric Power System Harmonic Measurement Based on Back-propagation Neural Network and Modified Genetic Algorithm
    Li, Tao
    Chen, Yuan-rui
    Li, Guang-ming
    2009 3RD INTERNATIONAL CONFERENCE ON POWER ELECTRONICS SYSTEMS AND APPLICATIONS: ELECTRIC VEHICLE AND GREEN ENERGY, 2009, : 87 - 87
  • [40] Compensation of Rotary Encoders Using Fourier Expansion-Back Propagation Neural Network Optimized by Genetic Algorithm
    Jia, Hua-Kun
    Yu, Lian-Dong
    Jiang, Yi-Zhou
    Zhao, Hui-Ning
    Cao, Jia-Ming
    SENSORS, 2020, 20 (09)