Convective Instability in Forchheimer-Prats Configuration with a Saturating Power-Law Fluid

被引:0
作者
El Fakiri, Hanae [1 ]
Lagziri, Hajar [1 ]
El Bouardi, Abdelmajid [1 ]
Lahlaouti, Mohammed Lhassane [1 ]
机构
[1] Abdelmalek Essaadi Univ, Fac Sci, Phys Dept, Energy Lab, Tetouan 99350, Morocco
关键词
Non-Newtonian fluids; porous media; Darcy-Forchheimer flow; Thermal instability; Horizontal throughflow; HORIZONTAL POROUS LAYER; FLOW; ONSET; PERMEABILITY; CURRENTS;
D O I
10.22055/jacm.2024.44741.4267
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The paper deals with the combined effect of non -Newtonian saturating fluid and horizontal flow rate on the thermal convection in a highly permeable, porous plane layer saturated with a power -law model. Asymmetric boundary conditions are assumed, with a cooled free surface at the top and a heated, impermeable, rigid wall at the bottom. The generalised Forchheimer equation is employed to model the power -law fluid movement. Convection cells emerge in the power -law fluid because of vertical temperature gradient imposed by the thermal boundaries. The onset of this scenario can be studied using linear stability theory, which leads to an eigenvalue problem. The latter is solved either numerically, employing shooting schemes, or analytically, using one -order Galerkin approach. The present study is considered an extension of the classical Prats problem. When the Peclet number, which defines the flow rate, is negligible, the configuration switches to the special case of Darcy-Rayielgh instability. The results show that the form drag exhibits a stronger stabilizing influence in shear -thinning fluids compared to shear -thickening and Newtonian ones since the saturating fluid is described by the power -law model. This scenario appears in the specific range of the Peclet number. In general, this investigation can be used to understand the heat transfer process in subsurface hydrocarbon reservoirs where the fluid may exhibit non -Newtonian behaviour.
引用
收藏
页码:357 / 368
页数:12
相关论文
共 26 条
[11]   Estimates of effective permeability for non-Newtonian fluid flow in randomly heterogeneous porous media [J].
Di Federico, Vittorio ;
Pinelli, Marco ;
Ugarelli, Rita .
STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2010, 24 (07) :1067-1076
[12]  
Finalyson B.A., 2013, The Method of Weighted Residuals and Variational Principles
[13]   The deep EGS (Enhanced Geothermal System) project at Soultz-sous-Forets (Alsace, France) [J].
Gerard, Andre ;
Genter, Albert ;
Kohl, Thomas ;
Lutz, Philippe ;
Rose, Peter ;
Rummel, Fritz .
GEOTHERMICS, 2006, 35 (5-6) :473-483
[14]  
He X.S., 1990, Journal of Fluid Mechanics, V216, P85
[15]   CONVECTION CURRENTS IN A POROUS MEDIUM [J].
HORTON, CW ;
ROGERS, FT .
JOURNAL OF APPLIED PHYSICS, 1945, 16 (06) :367-370
[16]   CONVECTION OF A FLUID IN A POROUS MEDIUM [J].
LAPWOOD, ER .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1948, 44 (04) :508-521
[17]  
NEILD DA, 1968, WATER RESOUR RES, V4, P553
[18]   Dual Porosity and Dual Permeability Modeling of Horizontal Well in Naturally Fractured Reservoir [J].
Nie, Ren-Shi ;
Meng, Ying-Feng ;
Jia, Yong-Lu ;
Zhang, Fu-Xiang ;
Yang, Xiang-Tong ;
Niu, Xin-Nian .
TRANSPORT IN POROUS MEDIA, 2012, 92 (01) :213-235
[19]   A Further Note on the Onset of Convection in a Layer of a Porous Medium Saturated by a Non-Newtonian Fluid of Power-Law Type [J].
Nield, D. A. .
TRANSPORT IN POROUS MEDIA, 2011, 88 (02) :187-191
[20]  
Nield D.A., 2017, Convection in Porous Media, Vfifth, DOI DOI 10.1007/978-3-319-49562-0