On the convergence of a linearly implicit finite element method for the nonlinear Schrödinger equation

被引:0
作者
Asadzadeh, Mohammad [1 ,2 ]
Zouraris, Georgios E. [3 ]
机构
[1] Chalmers Univ Technol, Dept Math, Gothenburg, Sweden
[2] Gothenburg Univ, Gothenburg, Sweden
[3] Univ Crete, Dept Math & Appl Math, Div Appl Math Differential Equat & Numer Anal, Iraklion, Crete, Greece
基金
瑞典研究理事会;
关键词
convergence; finite element method; linearly implicit time stepping; nonlinear Schr & ouml; dinger equation; nonuniform mesh; optimal-order error estimates; stability; SCHRODINGER-EQUATION; ERROR ANALYSIS; DIFFERENCE DISCRETIZATION; GALERKIN APPROXIMATIONS; NUMERICAL-SIMULATION; SYSTEMS; SCHEME; VORTEX;
D O I
10.1111/sapm.12743
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a model initial- and Dirichlet boundary-value problem for a nonlinear Schr & ouml;dinger equation in two and three space dimensions. The solution to the problem is approximated by a conservative numerical method consisting of a standard conforming finite element space discretization and a second-order, linearly implicit time stepping, yielding approximations at the nodes and at the midpoints of a nonuniform partition of the time interval. We investigate the convergence of the method by deriving optimal-order error estimates in the L2$L<^>2$ and the H1$H<^>1$ norm, under certain assumptions on the partition of the time interval and avoiding the enforcement of a courant-friedrichs-lewy (CFL) condition between the space mesh size and the time step sizes.
引用
收藏
页数:34
相关论文
共 47 条
[41]   OPTIMAL H1 ESTIMATES FOR 2 TIME-DISCRETE GALERKIN APPROXIMATIONS OF A NONLINEAR SCHRODINGER-EQUATION [J].
TOURIGNY, Y .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1991, 11 (04) :509-523
[42]   A New Error Analysis of Crank-Nicolson Galerkin FEMs for a Generalized Nonlinear Schrodinger Equation [J].
Wang, Jilu .
JOURNAL OF SCIENTIFIC COMPUTING, 2014, 60 (02) :390-407
[43]   Superconvergence analysis of BDF-Galerkin FEM for nonlinear Schrodinger equation [J].
Wang, Junjun ;
Li, Meng ;
Zhang, Yu .
NUMERICAL ALGORITHMS, 2022, 89 (01) :195-222
[44]   Unconditionally optimal error estimate of mass- and energy-stable Galerkin method for Schrodinger equation with cubic nonlinearity [J].
Yang, Huaijun .
APPLIED NUMERICAL MATHEMATICS, 2023, 183 :39-55
[45]  
ZAKHAROV VE, 1972, SOV PHYS JETP-USSR, V34, P62
[46]   On the convergence of a linear two-step finite element method for the nonlinear Schrodinger equation [J].
Zouraris, GE .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2001, 35 (03) :389-405
[47]   A Linear Implicit Finite Difference Discretization of the Schrodinger-Hirota Equation [J].
Zouraris, Georgios E. .
JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (01) :634-656