On the convergence of a linearly implicit finite element method for the nonlinear Schrödinger equation

被引:0
作者
Asadzadeh, Mohammad [1 ,2 ]
Zouraris, Georgios E. [3 ]
机构
[1] Chalmers Univ Technol, Dept Math, Gothenburg, Sweden
[2] Gothenburg Univ, Gothenburg, Sweden
[3] Univ Crete, Dept Math & Appl Math, Div Appl Math Differential Equat & Numer Anal, Iraklion, Crete, Greece
基金
瑞典研究理事会;
关键词
convergence; finite element method; linearly implicit time stepping; nonlinear Schr & ouml; dinger equation; nonuniform mesh; optimal-order error estimates; stability; SCHRODINGER-EQUATION; ERROR ANALYSIS; DIFFERENCE DISCRETIZATION; GALERKIN APPROXIMATIONS; NUMERICAL-SIMULATION; SYSTEMS; SCHEME; VORTEX;
D O I
10.1111/sapm.12743
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a model initial- and Dirichlet boundary-value problem for a nonlinear Schr & ouml;dinger equation in two and three space dimensions. The solution to the problem is approximated by a conservative numerical method consisting of a standard conforming finite element space discretization and a second-order, linearly implicit time stepping, yielding approximations at the nodes and at the midpoints of a nonuniform partition of the time interval. We investigate the convergence of the method by deriving optimal-order error estimates in the L2$L<^>2$ and the H1$H<^>1$ norm, under certain assumptions on the partition of the time interval and avoiding the enforcement of a courant-friedrichs-lewy (CFL) condition between the space mesh size and the time step sizes.
引用
收藏
页数:34
相关论文
共 47 条
[1]  
Adams R A., 2003, Sobolev Spaces
[2]   Solving the systems of equations arising in the discretization of some nonlinear PDE's by implicit Runge-Kutta methods [J].
Akrivis, G ;
Dougalis, VA ;
Karakashian, O .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1997, 31 (02) :251-287
[3]   ON FULLY DISCRETE GALERKIN METHODS OF 2ND-ORDER TEMPORAL ACCURACY FOR THE NONLINEAR SCHRODINGER-EQUATION [J].
AKRIVIS, GD ;
DOUGALIS, VA ;
KARAKASHIAN, OA .
NUMERISCHE MATHEMATIK, 1991, 59 (01) :31-53
[4]   FINITE-DIFFERENCE DISCRETIZATION OF THE CUBIC SCHRODINGER-EQUATION [J].
AKRIVIS, GD .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1993, 13 (01) :115-124
[5]  
Asadzadeh M., 2019, J. Math. Sci., V239, P233, DOI [10.1007/s10958-019-04301-1, DOI 10.1007/S10958-019-04301-1]
[6]   Relaxation scheme for the nonlinear Schrodinger equation and Davey-Stewartson systems [J].
Besse, C .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (12) :1427-1432
[7]  
Brenner SC., 2008, The Mathematical Theory of Finite Element Methods, V15, DOI DOI 10.1007/978-0-387-75934-0
[8]  
Brezis H., 1980, Nonlinear Analysis Theory, Methods & Applications, V4, P677, DOI 10.1016/0362-546X(80)90068-1
[9]   Unconditional optimal error estimates for BDF2-FEM for a nonlinear Schrodinger equation [J].
Cai, Wentao ;
Li, Jian ;
Chen, Zhangxin .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 331 :23-41
[10]   Unconditional convergence and optimal error estimates of the Euler semi-implicit scheme for a generalized nonlinear Schrodinger equation [J].
Cai, Wentao ;
Li, Jian ;
Chen, Zhangxin .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2016, 42 (06) :1311-1330