Spatiotemporal nonlinear dynamics and chaos in a mechanical Duffing-type system

被引:5
|
作者
Reis, Eduardo V. M. [1 ]
Savi, Marcelo A. [1 ]
机构
[1] Univ Fed Rio Janeiro, Ctr Nonlinear Mech, COPPE Mech Engn, BR-21941972 Rio De Janeiro, RJ, Brazil
关键词
Spatiotemporal chaos; Chaos; Duffing system; Nonlinear dynamics; Vibrations; Perturbations; Lyapunov exponents; Chaotic wave; LYAPUNOV EXPONENTS; OSCILLATOR;
D O I
10.1016/j.chaos.2024.115177
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper investigates spatiotemporal nonlinear dynamics and chaos in a dissipative mechanical Duffingtype system subjected to external stimulus. A nonlinear wave equation with cubic nonlinearity governs the system dynamics. A perturbation description is employed to build mathematical tools that represent different aspects of system dynamics, from local to global behaviors. Lyapunov exponents are defined from the different perturbations allowing the evaluation of local, convective and mean exponents. Different dynamical regimes are investigated considering homogeneous and heterogeneous spatial stimuli. Distinct dynamical responses are observed including periodic, quasi -periodic and chaotic behaviors. A novel concept of chaotic wave is employed to explain the spatial transport of chaos through the media considering heterogeneous conditions. Chaotic wave velocity is measured by the convective Lyapunov exponents.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Spatiotemporal chaos in a conservative Duffing-type system
    Reis, Eduardo V. M.
    Savi, Marcelo A.
    CHAOS SOLITONS & FRACTALS, 2022, 165
  • [2] Chaos prediction in the duffing-type system with friction using Melnikov's function
    Awrejcewicz, J
    Pyryev, Y
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2006, 7 (01) : 12 - 24
  • [3] Nonlinear dynamics and chaos control for a time delay Duffing system
    Ge, ZM
    Hsiao, CL
    Chen, YS
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2005, 6 (02) : 187 - 199
  • [4] Heart Rhythm Analysis Using Nonlinear Oscillators with Duffing-Type Connections
    Fonkou, Rodrigue F.
    Savi, Marcelo A.
    FRACTAL AND FRACTIONAL, 2023, 7 (08)
  • [5] Implementation of analog circuit and study of chaotic dynamics in a generalized Duffing-type MEMS resonator
    Sabarathinam, S.
    Thamilmaran, K.
    NONLINEAR DYNAMICS, 2017, 87 (04) : 2345 - 2356
  • [6] Nonlinear dynamics of fractional order Duffing system
    Li, Zengshan
    Chen, Diyi
    Zhu, Jianwei
    Liu, Yongjian
    CHAOS SOLITONS & FRACTALS, 2015, 81 : 111 - 116
  • [7] Phase evolution and control in a synchronized Duffing-type nonlinear micro-oscillator
    Yang, Qiqi
    Wang, Xuefeng
    Dai, Hongsheng
    Shi, Zhan
    Song, Jiahao
    Xu, Yutao
    Wan, Haibo
    Huan, Ronghua
    Wei, Xueyong
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 219
  • [8] Resonance, chaos and coexistence of attractors in a position dependent mass-driven Duffing-type oscillator
    Hinvi, L. A.
    Koukpemedji, A. A.
    Monwanou, V. A.
    Miwadinou, C. H.
    Kamdoum Tamba, V.
    Chabi Orou, J. B.
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2021, 79 (08) : 755 - 771
  • [9] Analytical proof on the existence of chaos in a generalized Duffing-type oscillator with fractional-order deflection
    Li, Huaqing
    Liao, Xiaofeng
    Ullah, Saleem
    Xiao, Li
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (06) : 2724 - 2733
  • [10] RESEARCH IN GLOBAL DYNAMICS OF DUFFING-TYPE OSCILLATOR BY METHOD OF COMPLETE BIFURCATION ANALYSIS
    Smirnova, Raisa
    Ivanov, Jurij
    Nikishin, Vladimir
    16TH INTERNATIONAL SCIENTIFIC CONFERENCE: ENGINEERING FOR RURAL DEVELOPMENT, 2017, : 1139 - 1144