NODAL SOLUTIONS FOR NONLINEAR SCHRODINGER SYSTEMS

被引:0
|
作者
Zhou, Xue [1 ]
Liu, Xiangqing [1 ]
机构
[1] Yunnan Normal Univ, Dept Math, Kunming 650092, Peoples R China
关键词
Schrodinger system; sign-changing solutions; truncation method; method of invariant sets of descending flow; SIGN-CHANGING SOLUTIONS; PHASE-SEPARATION; GROUND-STATES; BOUND-STATES; EQUATIONS;
D O I
10.58997/ejde.2024.31
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we consider the nonlinear Schrodinger system -triangle u(j) + lambda(j) u(j) = Sigma(k)(i=1) beta(ij)u(i)(2)u(j), in ohm , u(j) (x) = 0 , on partial derivative ohm , j = 1 , ..., k, where ohm subset of R-N ( N = 2 , 3) is a bounded smooth domain, lambda(j) > 0, j = 1 , ... , k, beta(ij) are constants satisfying beta(jj) > 0, beta(ij) = beta(ji) <= 0 for 1 <= i < j <= k . The existence of sign -changing solutions is proved by the truncation method and the invariant sets of descending flow method.
引用
收藏
页数:13
相关论文
共 50 条