Multi-Modality Semi-Supervised Learning for Ophthalmic Biomarkers Detection

被引:1
作者
Chen, Yanming [1 ]
Niu, Chenxi [1 ]
Ye, Chen [1 ]
Jin, Shengji [1 ]
Li, Yue [1 ]
Xu, Chi [1 ]
Liu, Keyi [1 ]
Gao, Haowei [1 ]
Hu, Jingxi [1 ]
Zou, Yuanhao [1 ]
Zheng, Huizhong [1 ]
He, Xiangjian [1 ]
机构
[1] Univ Nottingham Ningbo, Ningbo, Peoples R China
来源
INTERNATIONAL WORKSHOP ON ADVANCED IMAGING TECHNOLOGY, IWAIT 2024 | 2024年 / 13164卷
关键词
semi-supervised learning; ophthalmic biomarkers; multi-modality; disease diagnosis; OPTICAL COHERENCE TOMOGRAPHY; AUTOMATED DETECTION; QUANTIFICATION; OCT;
D O I
10.1117/12.3019655
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Ophthalmic Biomarkers, as an objective and quantifiable approach to identifying the ophthalmological disease process, are proven to be useful not only in assisting healthcare professionals in disease diagnosis but also in the identification of phenomena and risk factors in the early stages, which greatly contribute to disease prevention and better treatment of patients. In this study, a deep learning method is introduced to achieve simultaneous automatic recognition of six prevalent ophthalmic biomarkers in the OLIVES dataset. To enhance identification accuracy, semi-supervised learning techniques are adopted in this research and different data modalities are jointly optimized using a guided loss function. The experimental results reveal that the method reaches an F1 score of 0.70 on a test set with 3,872 images.
引用
收藏
页数:6
相关论文
共 20 条
[1]  
Bhagat N., 2014, Diabetic macular edema
[2]   Optical coherence tomography: A guide to interpretation of common macular diseases [J].
Bhende, Muna ;
Shetty, Sharan ;
Parthasarathy, Mohana Kuppuswamy ;
Ramya, S. .
INDIAN JOURNAL OF OPHTHALMOLOGY, 2018, 66 (01) :20-35
[3]   Deep learning in ophthalmology: a review [J].
Grewal, Parampal S. ;
Oloumi, Faraz ;
Rubin, Uriel ;
Tennant, Matthew T. S. .
CANADIAN JOURNAL OF OPHTHALMOLOGY-JOURNAL CANADIEN D OPHTALMOLOGIE, 2018, 53 (04) :309-313
[4]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[5]   Development of machine learning models for diagnosis of glaucoma [J].
Kim, Seong Jae ;
Cho, Kyong Jin ;
Oh, Sejong .
PLOS ONE, 2017, 12 (05)
[6]   Localization and diagnosis framework for pediatric cataracts based on slit-lamp images using deep features of a convolutional neural network [J].
Liu, Xiyang ;
Jiang, Jiewei ;
Zhang, Kai ;
Long, Erping ;
Cui, Jiangtao ;
Zhu, Mingmin ;
An, Yingying ;
Zhang, Jia ;
Liu, Zhenzhen ;
Lin, Zhuoling ;
Li, Xiaoyan ;
Chen, Jingjing ;
Cao, Qianzhong ;
Li, Jing ;
Wu, Xiaohang ;
Wang, Dongni ;
Lin, Haotian .
PLOS ONE, 2017, 12 (03)
[7]  
Mohankumar A., 2023, Hyperreflective foci in optical coherence tomography
[8]   Hybrid Deep Learning on Single Wide-field Optical Coherence tomography Scans Accurately Classifies Glaucoma Suspects [J].
Muhammad, Hassan ;
Fuchs, Thomas J. ;
De Cuir, Nicole ;
De Moraes, Carlos G. ;
Blumberg, Dana M. ;
Liebmann, Jeffrey M. ;
Ritch, Robert ;
Hood, Donald C. .
JOURNAL OF GLAUCOMA, 2017, 26 (12) :1086-1094
[9]  
Prabhushankar Mohit, 2022, Advances in Neural Information Processing Systems
[10]   Automated detection and classification of early AMD biomarkers using deep learning [J].
Saha, Sajib ;
Nassisi, Marco ;
Wang, Mo ;
Lindenberg, Sophiana ;
Kanagasingam, Yogi ;
Sadda, Srinivas ;
Hu, Zhihong Jewel .
SCIENTIFIC REPORTS, 2019, 9 (1)