DEMONSTRATION OF A STANDALONE, DESCRIPTIVE, AND PREDICTIVE DIGITAL TWIN OF A FLOATING OFFSHORE WIND TURBINE

被引:0
|
作者
Stadtmann, Florian [1 ]
Wassertheurer, Henrik Gusdal [1 ]
Rasheed, Adil [1 ,2 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Trondheim, Norway
[2] SINTEF Digital, Dept Math & Cybernet, Trondheim, Norway
来源
PROCEEDINGS OF ASME 2023 42ND INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE & ARCTIC ENGINEERING, OMAE2023, VOL 8 | 2023年
关键词
Digital Twin; Offshore Wind; Floating Offshore Wind Turbine; SYSTEM;
D O I
暂无
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Digital Twins bring several benefits for planning, operation, and maintenance of remote offshore assets. In this work, we explain the digital twin concept and the capability level scale in the context of wind energy. Furthermore, we demonstrate a standalone digital twin, a descriptive digital twin, and a prescriptive digital twin of an operational floating offshore wind turbine. The standalone digital twin consists of the virtual representation of the wind turbine and its operating environment. While at this level the digital twin does not evolve with the physical turbine, it can be used during the planning-, design-, and construction phases. At the next level, the descriptive digital twin is built upon the standalone digital twin by enhancing the latter with real data from the turbine. All the data is visualized in virtual reality for informed decision-making. Besides being used for data bundling and visualization, the descriptive digital twin forms the basis for diagnostic, predictive, prescriptive, and autonomous tools. A predictive digital twin is created through the use of weather forecasts, neural networks, and transfer learning. Finally, digital twin technology is discussed in a much wider context of ocean engineering.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Mooring system fatigue analysis of a floating offshore wind turbine
    Barrera, Carlos
    Battistella, Tommaso
    Guanche, Raul
    Losada, Inigo J.
    OCEAN ENGINEERING, 2020, 195
  • [22] Nonlinear analysis of a floating offshore wind turbine with internal resonances
    M. Ghozlane
    F. Najar
    Nonlinear Dynamics, 2024, 112 : 1729 - 1757
  • [23] Gaussian process metamodels for floating offshore wind turbine platforms
    Rajiv, Gayathry
    Verma, Mohit
    Subbulakshmi, A.
    OCEAN ENGINEERING, 2023, 267
  • [24] Nonlinear analysis of a floating offshore wind turbine with internal resonances
    Ghozlane, M.
    Najar, F.
    NONLINEAR DYNAMICS, 2024, 112 (03) : 1729 - 1757
  • [25] Motion Performance and Mooring System of a Floating Offshore Wind Turbine
    Zhao, Jing
    Zhang, Liang
    Wu, Haitao
    JOURNAL OF MARINE SCIENCE AND APPLICATION, 2012, 11 (03) : 328 - 334
  • [26] The typhoon effect on the aerodynamic performance of a floating offshore wind turbine
    Ma, Zhe
    Li, Wei
    Ren, Nianxin
    Ou, Jinping
    JOURNAL OF OCEAN ENGINEERING AND SCIENCE, 2017, 2 (04) : 279 - 287
  • [27] Investigation of a dynamically positioned floating offshore wind turbine concept
    Alwan, R.
    Babarit, A.
    Gilloteaux, J. C.
    EERA DEEPWIND'2021, 2021, 2018
  • [28] Hydrodynamic Analysis of the WIND-Bos Spar Floating Offshore Wind Turbine
    Hallak, Thiago S.
    Soares, C. Guedes
    Sainz, Oscar
    Hernandez, Sergio
    Arevalo, Alfonso
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2022, 10 (12)
  • [29] Passive Control by Inverted Pendulum of a Floating Offshore Wind Turbine
    Falcao, Jonas P. P.
    de Brito, Jose L. V.
    Avila, Suzana M. M.
    de Morais, Marcus V. G.
    INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2023, 23 (09)
  • [30] Recent progress on reliability analysis of offshore wind turbine support structures considering digital twin solutions
    Wang, Mengmeng
    Wang, Chengye
    Hnydiuk-Stefan, Anna
    Feng, Shizhe
    Atilla, Incecik
    Li, Zhixiong
    OCEAN ENGINEERING, 2021, 232