DEMONSTRATION OF A STANDALONE, DESCRIPTIVE, AND PREDICTIVE DIGITAL TWIN OF A FLOATING OFFSHORE WIND TURBINE

被引:0
|
作者
Stadtmann, Florian [1 ]
Wassertheurer, Henrik Gusdal [1 ]
Rasheed, Adil [1 ,2 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Trondheim, Norway
[2] SINTEF Digital, Dept Math & Cybernet, Trondheim, Norway
来源
PROCEEDINGS OF ASME 2023 42ND INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE & ARCTIC ENGINEERING, OMAE2023, VOL 8 | 2023年
关键词
Digital Twin; Offshore Wind; Floating Offshore Wind Turbine; SYSTEM;
D O I
暂无
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Digital Twins bring several benefits for planning, operation, and maintenance of remote offshore assets. In this work, we explain the digital twin concept and the capability level scale in the context of wind energy. Furthermore, we demonstrate a standalone digital twin, a descriptive digital twin, and a prescriptive digital twin of an operational floating offshore wind turbine. The standalone digital twin consists of the virtual representation of the wind turbine and its operating environment. While at this level the digital twin does not evolve with the physical turbine, it can be used during the planning-, design-, and construction phases. At the next level, the descriptive digital twin is built upon the standalone digital twin by enhancing the latter with real data from the turbine. All the data is visualized in virtual reality for informed decision-making. Besides being used for data bundling and visualization, the descriptive digital twin forms the basis for diagnostic, predictive, prescriptive, and autonomous tools. A predictive digital twin is created through the use of weather forecasts, neural networks, and transfer learning. Finally, digital twin technology is discussed in a much wider context of ocean engineering.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] TIME DOMAIN STRUCTURAL ANALYSIS AND DIGITAL TWIN APPLICATION FOR FLOATING OFFSHORE WIND TURBINE
    Lim, Ho-Joon
    Samaria, Sagar
    Choi, Sukjoo
    Sablok, Anil
    Jang, Hakun
    Koo, Bonjun
    PROCEEDINGS OF ASME 2023 42ND INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE & ARCTIC ENGINEERING, OMAE2023, VOL 8, 2023,
  • [2] Predictive digital twin for offshore wind farms
    Haghshenas A.
    Hasan A.
    Osen O.
    Mikalsen E.T.
    Energy Informatics, 2023, 6 (01)
  • [3] Design, Implementation, and Evaluation of an Output Prediction Model of the 10 MW Floating Offshore Wind Turbine for a Digital Twin
    Kim, Changhyun
    Dinh, Minh-Chau
    Sung, Hae-Jin
    Kim, Kyong-Hwan
    Choi, Jeong-Ho
    Graber, Lukas
    Yu, In-Keun
    Park, Minwon
    ENERGIES, 2022, 15 (17)
  • [4] TOWARD ENVIRONMENTAL AND STRUCTURAL DIGITAL TWIN OF OFFSHORE WIND TURBINE
    Zhao, Xiang
    My Ha Dao
    Quang Tuyen Le
    PROCEEDINGS OF ASME 2023 42ND INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE & ARCTIC ENGINEERING, OMAE2023, VOL 7, 2023,
  • [5] Platform Oscillation Reduction of a Floating Offshore Wind Turbine
    Niu, Yue
    Nagamune, Ryozo
    IFAC PAPERSONLINE, 2023, 56 (03): : 205 - 210
  • [6] Digital twin-driven dynamic repositioning of floating offshore wind farms
    Kandemir, Ege
    Liu, Jincheng
    Hasan, Agus
    ENERGY REPORTS, 2023, 9 : 208 - 214
  • [7] Requirements for the application of the Digital Twin Paradigm to offshore wind turbine structures for uncertain fatigue analysis
    Jorgensen, Jack
    Hodkiewicz, Melinda
    Cripps, Edward
    Hassan, Ghulam Mubashar
    COMPUTERS IN INDUSTRY, 2023, 145
  • [8] A Digital Twin for Assessing the Remaining Useful Life of Offshore Wind Turbine Structures
    Pacheco-Blazquez, Rafael
    Garcia-Espinosa, Julio
    Di Capua, Daniel
    Sanchez, Andres Pastor
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (04)
  • [9] Risk assessment of Floating Offshore Wind Turbine
    Grasu, Gabriela
    Liu, Pengfei
    ENERGY REPORTS, 2023, 9 : 1 - 18
  • [10] Hydrodynamic analysis of floating offshore wind turbine
    Chodnekar, Yeshwant Prabhu
    Mandal, Sukomal
    Rao, Balakrishna K.
    8TH INTERNATIONAL CONFERENCE ON ASIAN AND PACIFIC COASTS (APAC 2015), 2015, 116 : 4 - 11