A Decision Method for First-Order Stream Logic

被引:0
作者
Ruess, Harald [1 ]
机构
[1] Entalus Comp Sci Lab, 2071 Gulf Mexico Dr, Longboat Key, FL 34228 USA
来源
AUTOMATED REASONING, IJCAR 2024, PT II | 2024年 / 14740卷
关键词
Decision Procedures; First-Order Logic; Stream Calculus; Formal Power Series; Real-Closed Rings; Quantifier Elimination; QUANTIFIER ELIMINATION; REAL; DEFINABILITY; SERIES; RINGS;
D O I
10.1007/978-3-031-63501-4_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Our main result is a doubly exponential decision procedure for the first-order equality theory of streams with addition, convolution, and control-oriented stream operations. This stream logic is shown to be expressive for solving basic problems in stream calculus.
引用
收藏
页码:137 / 156
页数:20
相关论文
共 47 条
[1]  
Alling N., 1987, Foundations of Analysis over Surreal Number Fields
[2]  
Allouche J-P., 2003, AUTOMATIC SEQUENCES, DOI [10.1017/CBO9780511546563, DOI 10.1017/CBO9780511546563]
[3]   AN EXISTENTIAL O-DEFINITION OF Fq[[t]] IN Fq((t)) [J].
Anscombe, Will ;
Koenigsmann, Jochen .
JOURNAL OF SYMBOLIC LOGIC, 2014, 79 (04) :1336-1343
[5]   On the combinatorial and algebraic complexity of quantifier elimination [J].
Basu, S ;
Pollack, R ;
Roy, MF .
JOURNAL OF THE ACM, 1996, 43 (06) :1002-1045
[6]  
Bourbaki N., 1964, Elements de mathematique: Fasc. I. Livre 1, Theorie des ensembles
[7]  
[5], Fascicule de resultats
[8]  
Broy M., 2001, Specification and development of interactive systems: Focus on streams, interfaces, and refinement, DOI DOI 10.1007/978-1-4613-0091-5
[9]   Specification and verification of concurrent systems by causality and realizability [J].
Broy, Manfred .
THEORETICAL COMPUTER SCIENCE, 2023, 974
[10]   DEFINABILITY IN MONADIC SECOND-ORDER THEORY OF SUCCESSOR [J].
BUCHI, JR ;
LANDWEBE.LH .
JOURNAL OF SYMBOLIC LOGIC, 1969, 34 (02) :166-&