Unit information Dirichlet process prior

被引:0
作者
Gu, Jiaqi [1 ]
Yin, Guosheng [2 ]
机构
[1] Stanford Univ, Dept Neurol & Neurol Sci, 453 Quarry Rd, Stanford, CA 94304 USA
[2] Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong 999077, Peoples R China
关键词
Bayesian nonparametric; Fisher information; hazard function; Markov chain Monte Carlo; time-to-event data; PRIOR DISTRIBUTIONS; DOCETAXEL; NIVOLUMAB;
D O I
10.1093/biomtc/ujae091
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Prior distributions, which represent one's belief in the distributions of unknown parameters before observing the data, impact Bayesian inference in a critical and fundamental way. With the ability to incorporate external information from expert opinions or historical datasets, the priors, if specified appropriately, can improve the statistical efficiency of Bayesian inference. In survival analysis, based on the concept of unit information (UI) under parametric models, we propose the unit information Dirichlet process (UIDP) as a new class of nonparametric priors for the underlying distribution of time-to-event data. By deriving the Fisher information in terms of the differential of the cumulative hazard function, the UIDP prior is formulated to match its prior UI with the weighted average of UI in historical datasets and thus can utilize both parametric and nonparametric information provided by historical datasets. With a Markov chain Monte Carlo algorithm, simulations and real data analysis demonstrate that the UIDP prior can adaptively borrow historical information and improve statistical efficiency in survival analysis.
引用
收藏
页数:12
相关论文
共 19 条
[1]   NONPARAMETRIC INFERENCE FOR A FAMILY OF COUNTING PROCESSES [J].
AALEN, O .
ANNALS OF STATISTICS, 1978, 6 (04) :701-726
[2]   Modified power prior with multiple historical trials for binary endpoints [J].
Banbeta, Akalu ;
van Rosmalen, Joost ;
Dejardin, David ;
Lesaffre, Emmanuel .
STATISTICS IN MEDICINE, 2019, 38 (07) :1147-1169
[3]   Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer [J].
Borghaei, H. ;
Paz-Ares, L. ;
Horn, L. ;
Spigel, D. R. ;
Steins, M. ;
Ready, N. E. ;
Chow, L. Q. ;
Vokes, E. E. ;
Felip, E. ;
Holgado, E. ;
Barlesi, F. ;
Kohlhaeufl, M. ;
Arrieta, O. ;
Burgio, M. A. ;
Fayette, J. ;
Lena, H. ;
Poddubskaya, E. ;
Gerber, D. E. ;
Gettinger, S. N. ;
Rudin, C. M. ;
Rizvi, N. ;
Crino, L. ;
Blumenschein, G. R. ;
Antonia, S. J. ;
Dorange, C. ;
Harbison, C. T. ;
Finckenstein, F. Graf ;
Brahmer, J. R. .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 373 (17) :1627-1639
[4]   Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer [J].
Brahmer, Julie ;
Reckamp, Karen L. ;
Baas, Paul ;
Crino, Lucio ;
Eberhardt, Wilfried E. E. ;
Poddubskaya, Elena ;
Antonia, Scott ;
Pluzanski, Adam ;
Vokes, Everett E. ;
Holgado, Esther ;
Waterhouse, David ;
Ready, Neal ;
Gainor, Justin ;
Aren Frontera, Osvaldo ;
Havel, Libor ;
Steins, Martin ;
Garassino, Marina C. ;
Aerts, Joachim G. ;
Domine, Manuel ;
Paz-Ares, Luis ;
Reck, Martin ;
Baudelet, Christine ;
Harbison, Christopher T. ;
Lestini, Brian ;
Spigel, David R. .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 373 (02) :123-135
[5]   Frequentist accuracy of Bayesian estimates [J].
Efron, Bradley .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2015, 77 (03) :617-646
[6]   BAYESIAN ANALYSIS OF SOME NONPARAMETRIC PROBLEMS [J].
FERGUSON, TS .
ANNALS OF STATISTICS, 1973, 1 (02) :209-230
[7]   PRIOR DISTRIBUTIONS ON SPACES OF PROBABILITY MEASURES [J].
FERGUSON, TS .
ANNALS OF STATISTICS, 1974, 2 (04) :615-629
[8]   Power priors based on multiple historical studies for binary outcomes [J].
Gravestock, Isaac ;
Held, Leonhard .
BIOMETRICAL JOURNAL, 2019, 61 (05) :1201-1218
[9]  
Ibrahim JG, 2000, STAT SCI, V15, P46
[10]   Unit information prior for adaptive information borrowing from multiple historical datasets [J].
Jin, Huaqing ;
Yin, Guosheng .
STATISTICS IN MEDICINE, 2021, 40 (25) :5657-5672