Construction of S-scheme heterojunction via Cu2ZnSnS4 coupled with g-C3N4 for enhancing HER performance

被引:4
|
作者
Raza, Adil [1 ]
Haidry, Azhar Ali [1 ,2 ]
Yao, Zhengjun [1 ]
Amin, Talha [2 ]
Ahsan, Muhammad [2 ]
Alshgari, Razan A. [3 ]
Mohammad, Saikh [3 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Mat Sci & Technol, Jiangjun Rd Campus,29 Jiangjun Ave, Nanjing 210016, Peoples R China
[2] Univ Okara, Dept Phys, 2 KM Renala Khurd, Okara 56300, Pakistan
[3] King Saud Univ, Coll Sci, Dept Chem, Riyadh 11451, Saudi Arabia
基金
中国国家自然科学基金;
关键词
Hydrogen evolution rate; S; -scheme; Built-in electric field; Cu2ZnSnS4; GRAPHITIC CARBON NITRIDE; PHOTOCATALYST; REDUCTION; HETEROSTRUCTURE; NANOCOMPOSITES; PHOSPHATE; VACANCIES; REMOVAL;
D O I
10.1016/j.ijhydene.2024.08.133
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
It is shown that replacing non-noble metals with noble metals in photocatalytic water splitting is pivotal for increased and sustained hydrogen production. However, the challenge persists in designing and developing a cost-effective, highly active catalyst with effective carrier separation and providing sufficient H+ reduction sites to enhance photocatalytic H2 evolution efficiency. Herein, a series of S-scheme Cu2ZnSnS4/g-C3N4 (CZTS/CN) heterojunction composites were prepared via the hydrothermal method, followed by comprehensive characterizations for in-depth investigation. The TEM image exhibits a clear interface, showing the heterojunction formation between CZTS and CN nanosheets. The results show that incorporating CZTS cocatalyst significantly improves CN photocatalytic hydrogen evolution reaction (HER) and its performance is notably influenced by CZTS to CN mass ratio. Among CZTS/CN heterojunction composites, the 5% CZTS/CN heterojunction composite exhibited a significantly improved HER of 243.64 mu mol g- 1h- 1, which is 29.4 and 7.08 folds superior as compared to CN (8.29 mu mol g- 1h- 1) and CZTS (34.42 mu mol g- 1h- 1), respectively. The mechanism study revealed that the excellent superior H2 evolution performance resulted from the established internal electric field (IEF) in p-n heterojunction, which expedites the efficient separation and migration of photoinduced carriers coupled with the distinctive flower-like configuration of CZTS offering a substantial surface area and enough active reduction sites for photocatalysis process. This work presents a rational design and an inexpensive and efficient heterojunction photocatalysis system suitable for diverse applications.
引用
收藏
页码:421 / 431
页数:11
相关论文
共 50 条
  • [1] Enhancing CO2 photoreduction by construction of g-C3N4/Co-MOFs S-scheme heterojunction
    Sabir, Muhammad
    Sayed, Mahmoud
    Zeng, Zhuofan
    Cheng, Bei
    Wang, Wang
    Wang, Chuanbin
    Xu, Jingsan
    Cao, Shaowen
    APPLIED SURFACE SCIENCE, 2025, 693
  • [2] Novel g-C3N4/g-C3N4 S-scheme isotype heterojunction for improved photocatalytic hydrogen generation
    Xu, Quanlong
    Ma, Dekun
    Yang, Shuibin
    Tian, Zhengfang
    Cheng, Bei
    Fan, Jiajie
    APPLIED SURFACE SCIENCE, 2019, 495
  • [3] Insights into the photocatalytic mechanism of S-scheme g-C3N4/ BiOBr heterojunction
    Liu, Fang
    Xu, Te-Te
    Jiang, Zhen-Yi
    INORGANIC CHEMISTRY COMMUNICATIONS, 2022, 143
  • [4] Interface regulation of ZnIn2S4/g-C3N4 S-scheme heterojunction for revealing exciton transfer mechanism and enhancing photocatalytic performance
    Liu, Xiaojie
    Kang, Shirong
    Yang, Guang
    Wang, Zixian
    Gao, Gaimei
    Dou, Mingyu
    Yang, Hua
    Li, Rui
    Li, Dacheng
    Dou, Jianmin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 51 : 410 - 424
  • [5] Construction of a In2O3/ultrathin g-C3N4 S-scheme heterojunction for sensitive photoelectrochemical aptasensing of diazinon
    Yan, Pengcheng
    Huang, Jing
    Wu, Guanyu
    Zhang, Yu
    Mo, Zhao
    Xu, Keqiang
    Ling, Min
    Dong, Sihua
    Xu, Li
    Li, Henan
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 679 : 653 - 661
  • [6] S-Scheme MnCo2S4/g-C3N4 Heterojunction Photocatalyst for H2 Production
    Sun, Tao
    Li, Chenxi
    Bao, Yupeng
    Fan, Jun
    Liu, Enzhou
    ACTA PHYSICO-CHIMICA SINICA, 2023, 39 (06)
  • [7] Metal free S-scheme heterojunction S-doped g-C3N4/g-C3N4 for enhanced photocatalytic water splitting
    Nagar, Om Prakash
    Barman, Tripti
    Marumoto, Kazuhiro
    Shimoi, Yukihiro
    Matsuishi, Kiyoto
    Chouhan, Neelu
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 87 : 526 - 538
  • [8] Construction of S-scheme heterojunction of OVs-BiOIO3/N-CQDs/g-C3N4 for degradation of tetracycline
    Jing, Hongxia
    Chen, Bingge
    Wang, Xu
    Liu, Jun
    Wu, Mingliang
    Zhang, Xiaoming
    Pei, Wangjun
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2024, 176
  • [9] Construction of g-C3N4 nanotube/Ag3PO4 S-scheme heterojunction for enhanced photocatalytic oxygen generation
    Li, Dongsheng
    Liu, Yong
    Xu, Difa
    Liu, Qinqin
    Tang, Hua
    CERAMICS INTERNATIONAL, 2022, 48 (02) : 2169 - 2176
  • [10] Excellent photocatalytic activity of MoO3-adorned g-C3N4 systems: Construction of S-scheme heterojunction
    Luo, Jianmin
    Han, Haonan
    Wu, Jingwu
    Wang, Xinlei
    Feng, Junli
    Toan, Sam
    Wang, Lei
    Lai, Yinlong
    APPLIED SURFACE SCIENCE, 2022, 604