Riesz Inequality for Harmonic Quasiregular Mappings

被引:0
作者
Bajrami, Elver [1 ]
机构
[1] Univ Prishtina, Dept Math, Mother Teresa 5, Prishtina 10000, Kosovo
来源
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS | 2024年 / 17卷 / 03期
关键词
Harmonic mappings; Quasiregular mappings; Riesz theorem;
D O I
10.29020/nybg.ejpam.v17i3.5281
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we generalize the Riesz theorem for harmonic quasiregular mappings for a special case (when p = 2) in the unit disc. Our results improve similar results in this field and are proved with milder conditions. Moreover, we prove another variant forms of Riesz inequality for harmonic quasiregular functions.
引用
收藏
页码:1490 / 1496
页数:7
相关论文
共 14 条
  • [1] Astala K, 2011, PURE APPL MATH Q, V7, P19
  • [2] Beckenbach EF., 1938, J. Lond. Math. Soc, V13, P82, DOI [10.1112/jlms/s1-13.2.82, DOI 10.1112/JLMS/S1-13.2.82]
  • [3] Duren P., 2004, HARMONIC MAPPINGS PL
  • [4] Duren P. L., 1970, Pure and Applied Mathematics, V38, P25
  • [5] Fefferman C, 1972, ACTA MATH-DJURSHOLM, V129, P137, DOI 10.1007/BF02392215
  • [6] ANALYSIS AND APPLICATIONS: THE MATHEMATICAL WORK OF ELIAS STEIN
    Fefferman, Charles
    Ionescu, Alex
    Tao, Terence
    Wainger, Stephen
    Magyar, Akos
    Mirek, Mariusz
    Nagel, Alexander
    Phong, D. H.
    Pierce, Lillian
    Ricci, Fulvio
    Sogge, Christopher
    Street, Brian
    Lanzani, Loredana
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 57 (04) : 523 - 594
  • [7] Garnett J., 2007, Grad. Texts in Math., V236
  • [8] ON RIESZ TYPE INEQUALITIES FOR HARMONIC MAPPINGS ON THE UNIT DISK
    Kalaj, David
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (06) : 4031 - 4051
  • [9] Riesz conjugate functions theorem for harmonic quasiconformal mappings
    Liu, Jinsong
    Zhu, Jian-Feng
    [J]. ADVANCES IN MATHEMATICS, 2023, 434
  • [10] BEST VALUES OF CONSTANTS IN THEOREMS OF RIESZ M, ZYGMUND AND KOLMOGOROV
    PICHORIDES, SK
    [J]. STUDIA MATHEMATICA, 1972, 44 (02) : 165 - +