A New Adaptive Levenberg-Marquardt Method for Nonlinear Equations and Its Convergence Rate under the Hölderian Local Error Bound Condition

被引:1
作者
Han, Yang [1 ]
Rui, Shaoping [1 ]
机构
[1] Huaibei Normal Univ, Fac Math & Stat, Dept Math, Huaibei 235000, Peoples R China
来源
SYMMETRY-BASEL | 2024年 / 16卷 / 06期
关键词
Levenberg-Marquardt method; nonlinear equations; LM parameter; H & ouml; lderian local error bound; convergence; LINE SEARCH TECHNIQUE; TRUST-REGION METHOD; SYSTEMS; ALGORITHM;
D O I
10.3390/sym16060674
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Levenberg-Marquardt (LM) method is one of the most significant methods for solving nonlinear equations as well as symmetric and asymmetric linear equations. To improve the method, this paper proposes a new adaptive LM algorithm by modifying the LM parameter, combining the trust region technique and the non-monotone technique. It is interesting that the new algorithm is constantly optimized by adaptively choosing the LM parameter. To evaluate the effectiveness of the new algorithm, we conduct tests using various examples. To extend the convergence results, we prove the convergence of the new algorithm under the H & ouml;lderian local error bound condition rather than the commonly used local error bound condition. Theoretical analysis and numerical results show that the new algorithm is stable and effective.
引用
收藏
页数:19
相关论文
共 34 条
  • [1] Local convergence of the Levenberg-Marquardt method under Holder metric subregularity
    Ahookhosh, Masoud
    Aragon Artacho, Francisco J.
    Fleming, Ronan M. T.
    Vuong, Phan T.
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (5-6) : 2771 - 2806
  • [2] An efficient nonmonotone trust-region method for unconstrained optimization
    Ahookhosh, Masoud
    Amini, Keyvan
    [J]. NUMERICAL ALGORITHMS, 2012, 59 (04) : 523 - 540
  • [3] A Nonmonotone trust region method with adaptive radius for unconstrained optimization problems
    Ahookhosh, Masoud
    Amini, Keyvan
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (03) : 411 - 422
  • [4] An efficient Levenberg-Marquardt method with a new LM parameter for systems of nonlinear equations
    Amini, Keyvan
    Rostami, Faramarz
    Caristi, Giuseppe
    [J]. OPTIMIZATION, 2018, 67 (05) : 637 - 650
  • [5] [Anonymous], 1975, Nonlinear Programming, DOI 10.1016/B978-0-12-372180-8.50042-1
  • [6] The effect of calmness on the solution set of systems of nonlinear equations
    Behling, Roger
    Iusem, Alfredo
    [J]. MATHEMATICAL PROGRAMMING, 2013, 137 (1-2) : 155 - 165
  • [7] A modified Levenberg-Marquardt method for solving system of nonlinear equations
    Chen, Liang
    Ma, Yanfang
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (02) : 2019 - 2040
  • [8] Benchmarking optimization software with performance profiles
    Dolan, ED
    Moré, JJ
    [J]. MATHEMATICAL PROGRAMMING, 2002, 91 (02) : 201 - 213
  • [9] On the quadratic convergence of the Levenberg-Marquardt method without nonsingularity assumption
    Fan, JY
    Yuan, YX
    [J]. COMPUTING, 2005, 74 (01) : 23 - 39
  • [10] Fan JY, 2003, J COMPUT MATH, V21, P625