On solvability of polyharmonic Dirichlet problem in symmetric Sobolev spaces

被引:0
作者
Bilalov, Bilal T. [1 ,2 ,3 ,6 ]
Sadigova, Sabina R. [1 ,4 ]
Sezer, Yonca [2 ]
Nasibova, Natavan P. [5 ]
机构
[1] Minist Sci & Educ, Dept Nonharmon Anal, Inst Math & Mech, Baku, Azerbaijan
[2] Yildiz Tech Univ, Dept Math, Istanbul, Turkiye
[3] Azerbaijan Univ Architecture & Construct, Dept Funct Anal & Applicat, Baku, Azerbaijan
[4] Khazar Univ, Dept Math, Baku, Azerbaijan
[5] Azerbaijan State Oil & Ind Univ, Dept Gen & Appl Math, Baku, Azerbaijan
[6] Minist Sci & Educ, Inst Math & Mech, Baku, Azerbaijan
关键词
Dirichlet problem; polyharmonic equation; solvability; symmetric Sobolev spaces; ORDER ELLIPTIC-EQUATIONS; MORREY SPACES; ORLICZ SPACES; REGULARITY; BOUNDARY; INDEXES;
D O I
10.1002/mma.10279
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega subset of R-n be a bounded domain with sufficiently smooth boundary partial derivative Omega and X (Omega) be a symmetric space defined on the measure space (Omega; dx). We consider a Dirichlet problem for 2m-th order polyharmonic equation, and we establish its solvability (in strong sense) in Sobolev space W-X(2m) (Omega) generated by the norm of X (Omega). Such spaces include classical Sobolev spaces, Orlicz-Sobolev spaces, grand Sobolev spaces, and Marcinkiewicz-Sobolev spaces. The obtained results are new for these special cases, too.
引用
收藏
页码:14386 / 14401
页数:16
相关论文
共 38 条