Radiomics Analysis of Quantitative Maps from Synthetic MRI for Predicting Grades and Molecular Subtypes of Diffuse Gliomas

被引:0
作者
Lin, Danlin [1 ]
Liu, Jiehong [2 ]
Ke, Chao [3 ]
Chen, Haolin [4 ]
Li, Jing [1 ]
Xie, Yuanyao [2 ]
Ma, Jianhua [2 ,5 ,6 ]
Lv, Xiaofei [1 ]
Feng, Yanqiu [2 ,5 ,6 ,7 ,8 ,9 ]
机构
[1] Sun Yat Sen Univ, Collaborat Innovat Ctr Canc Med, Dept Med Imaging, State Key Lab Oncol South China,Canc Ctr, Guangzhou, Peoples R China
[2] Southern Med Univ, Sch Biomed Engn, Guangzhou, Peoples R China
[3] Sun Yat Sen Univ, Canc Ctr, Collaborat Innovat Ctr Canc Med, Dept Neurosurg,State Key Lab Oncol South China, Guangzhou, Peoples R China
[4] Sun Yat Sen Univ, Collaborat Innovat Ctr Canc Med, Dept Radiat Oncol,Canc Ctr, State Key Lab Oncol South China, Guangzhou, Peoples R China
[5] Southern Med Univ, Guangdong Prov Key Lab Med Image Proc, Guangzhou, Peoples R China
[6] Southern Med Univ, Guangdong Prov Engn Lab Med Imaging & Diagnost Tec, Guangzhou, Peoples R China
[7] Guangdong Hong Kong Macao Greater Bay Area Ctr Bra, Guangzhou, Peoples R China
[8] Minist Educ, Key Lab Mental Hlth, Guangzhou, Peoples R China
[9] Southern Med Univ, Peoples Hosp Shunde 1, Dept Radiol, Foshan, Peoples R China
基金
中国国家自然科学基金;
关键词
Radiomics; Quantitative maps; Synthetic MRI; Glioma grades; Glioma molecular subtypes; CENTRAL-NERVOUS-SYSTEM; TUMORS; CLASSIFICATION; GLIOBLASTOMA; FEATURES; MARKERS; BRAIN; T1;
D O I
10.1007/s00062-024-01421-3
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Purpose To investigate the feasibility of using radiomics analysis of quantitative maps from synthetic MRI to preoperatively predict diffuse glioma grades, isocitrate dehydrogenase (IDH) subtypes, and 1p/19q codeletion status. Methods Data from 124 patients with diffuse glioma were used for analysis (n = 87 for training, n = 37 for testing). Quantitative T1, T2, and proton density (PD) maps were obtained using synthetic MRI. Enhancing tumour (ET), non-enhancing tumour and necrosis (NET), and peritumoral edema (PE) regions were segmented followed by manual fine-tuning. Features were extracted using PyRadiomics and then selected using Levene/T, BorutaShap and maximum relevance minimum redundancy algorithms. A support vector machine was adopted for classification. Receiver operating characteristic curve analysis and integrated discrimination improvement analysis were implemented to compare the performance of different radiomics models. Results Radiomics models constructed using features from multiple tumour subregions (ET + NET + PE) in the combined maps (T1 + T2 + PD) achieved the highest AUC in all three prediction tasks, among which the AUC for differentiating lower-grade and high-grade diffuse gliomas, predicting IDH mutation status and predicting 1p/19q codeletion status were 0.92, 0.95 and 0.86 respectively. Compared with those constructed on individual T1, T2, and PD maps, the discriminant ability of radiomics models constructed on the combined maps separately increased by 11, 17 and 10% in predicting glioma grades, 35, 52 and 19% in predicting IDH mutation status, and 16, 15 and 14% in predicting 1p/19q codeletion status (p < 0.05). Conclusion Radiomics analysis of quantitative maps from synthetic MRI provides a new quantitative imaging tool for the preoperative prediction of grades and molecular subtypes in diffuse gliomas.
引用
收藏
页码:817 / 826
页数:10
相关论文
共 41 条
[1]  
Avants B.B., 2009, Insight. J., V2, P1, DOI [10.54294/uvnhin, DOI 10.54294/UVNHIN]
[2]   Measurements of water diffusion and T1 values in peritumoural oedematous brain [J].
Bastin, ME ;
Sinha, S ;
Whittle, AR ;
Wardlaw, JM .
NEUROREPORT, 2002, 13 (10) :1335-1340
[3]   Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas [J].
Brat, Daniel J. ;
Verhaak, Roel G. W. ;
Al-dape, Kenneth D. ;
Yung, W. K. Alfred ;
Salama, Sofie R. ;
Cooper, Lee A. D. ;
Rheinbay, Esther ;
Miller, C. Ryan ;
Vitucci, Mark ;
Morozova, Olena ;
Robertson, A. Gordon ;
Noushmehr, Houtan ;
Laird, Peter W. ;
Cherniack, Andrew D. ;
Akbani, Rehan ;
Huse, Jason T. ;
Ciriello, Giovanni ;
Poisson, Laila M. ;
Barnholtz-Sloan, Jill S. ;
Berger, Mitchel S. ;
Brennan, Cameron ;
Colen, Rivka R. ;
Colman, Howard ;
Flanders, Adam E. ;
Giannini, Caterina ;
Grifford, Mia ;
Iavarone, Antonio ;
Jain, Rajan ;
Joseph, Isaac ;
Kim, Jaegil ;
Kasaian, Katayoon ;
Mikkelsen, Tom ;
Murray, Bradley A. ;
O'Neill, Brian Patrick ;
Pachter, Lior ;
Parsons, Donald W. ;
Sougnez, Carrie ;
Sulman, Erik P. ;
Vandenberg, Scott R. ;
Van Meir, Erwin G. ;
von Deimling, Andreas ;
Zhang, Hailei ;
Crain, Daniel ;
Lau, Kevin ;
Mallery, David ;
Morris, Scott ;
Paulauskis, Joseph ;
Penny, Robert ;
Shelton, Troy ;
Sherman, Mark .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 372 (26) :2481-2498
[4]   Multi-site repeatability and reproducibility of MR fingerprinting of the healthy brain at 1.5 and 3.0 T [J].
Buonincontri, Guido ;
Biagi, Laura ;
Retico, Alessandra ;
Cecchi, Paolo ;
Cosottini, Mirco ;
Gallagher, Ferdia A. ;
Gomez, Pedro A. ;
Graves, Martin J. ;
McLean, Mary A. ;
Riemer, Frank ;
Schulte, Rolf F. ;
Tosetti, Michela ;
Zaccagna, Fulvio ;
Kaggie, Joshua D. .
NEUROIMAGE, 2019, 195 :362-372
[5]   T1 AND T2 PROTON NUCLEAR-MAGNETIC-RESONANCE (NMR) RELAXATION-TIMES INVITRO AND HUMAN INTRACRANIAL TUMORS - RESULTS FROM 98 PATIENTS [J].
CHATEL, M ;
DARCEL, F ;
DECERTAINES, J ;
BENOIST, L ;
BERNARD, AM .
JOURNAL OF NEURO-ONCOLOGY, 1986, 3 (04) :315-321
[6]   Classifying lower grade glioma cases according to whole genome gene expression [J].
Chen, Baoshi ;
Liang, Tingyu ;
Yang, Pei ;
Wang, Haoyuan ;
Liu, Yanwei ;
Yang, Fan ;
You, Gan .
ONCOTARGET, 2016, 7 (45) :74031-74042
[7]   Boosting the electrochemical performance of 3D composite lithium metal anodes through synergistic structure and interface engineering [J].
Chen, Yuanmao ;
Ke, Xi ;
Cheng, Yifeng ;
Fan, Mouping ;
Wu, Wenli ;
Huang, Xinyue ;
Liang, Yaohua ;
Zhong, Yicheng ;
Ao, Zhimin ;
Lai, Yanqing ;
Wang, Guoxiu ;
Shi, Zhicong .
ENERGY STORAGE MATERIALS, 2020, 26 :56-64
[8]   Prognostic Imaging Biomarkers in Glioblastoma: Development and Independent Validation on the Basis of Multiregion and Quantitative Analysis of MR Images [J].
Cui, Yi ;
Tha, Khin Khin ;
Terasaka, Shunsuke ;
Yamaguchi, Shigeru ;
Wang, Jeff ;
Kudo, Kohsuke ;
Xing, Lei ;
Shirato, Hiroki ;
Li, Ruijiang .
RADIOLOGY, 2016, 278 (02) :546-553
[9]   TUMOR DETECTION BY NUCLEAR MAGNETIC RESONANCE [J].
DAMADIAN, R .
SCIENCE, 1971, 171 (3976) :1151-&
[10]   COMPARING THE AREAS UNDER 2 OR MORE CORRELATED RECEIVER OPERATING CHARACTERISTIC CURVES - A NONPARAMETRIC APPROACH [J].
DELONG, ER ;
DELONG, DM ;
CLARKEPEARSON, DI .
BIOMETRICS, 1988, 44 (03) :837-845