Residual-based a posteriori error estimators for algebraic stabilizations

被引:0
作者
Jha, Abhinav [1 ]
机构
[1] Univ Stuttgart, Inst Appl Anal & Numer Simulat, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
关键词
Steady-state convection diffusion reaction equations; Algebraically stabilized finite element methods; A posteriori estimator; Adaptive grid refinement;
D O I
10.1016/j.aml.2024.109192
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we extend the analysis for the residual-based a posteriori error estimators in the energy norm defined for the algebraic flux correction (AFC) schemes (Jha, 2021) to the newly proposed algebraic stabilization schemes (John and Knobloch, 2022; Knobloch, 2023). Numerical simulations on adaptively refined grids are performed in two dimensions showing the higher efficiency of an algebraic stabilization with similar accuracy compared with an AFC scheme.
引用
收藏
页数:7
相关论文
共 6 条
[1]   An algebraic flux correction scheme satisfying the discrete maximum principle and linearity preservation on general meshes [J].
Barrenechea, Gabriel R. ;
John, Volker ;
Knobloch, Petr .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2017, 27 (03) :525-548
[2]  
Barrenechea Gabriel R., 2018, SeMA Journal, V75, P655
[3]  
Brenner S. C., 2008, MATH THEORY FINITE E, V15, DOI [DOI 10.1007/978-0-387-75934-0, 10.1007/978-0-387-75934-0]
[4]   A NEW FINITE-ELEMENT FORMULATION FOR COMPUTATIONAL FLUID-DYNAMICS .2. BEYOND SUPG [J].
HUGHES, TJR ;
MALLET, M ;
MIZUKAMI, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1986, 54 (03) :341-355
[5]   A study of solvers for nonlinear AFC discretizations of convection-diffusion equations [J].
Jha, Abhinav ;
John, Volker .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (09) :3117-3138
[6]  
Verfurth R., 2013, POSTERIORI ERROR EST