In situ growth of Mo-CoFe LDH on nickel foam for efficient oxygen evolution reaction

被引:5
作者
Duan, Yuchen [1 ]
Hu, Bin [1 ]
Luo, Yongping [3 ]
Xie, Yu [1 ]
Chen, Yong [1 ]
Zhang, Yifan [2 ]
Ling, Yun [1 ]
Zhao, Jinsheng [4 ]
机构
[1] Nanchang Hangkong Univ, Coll Environm & Chem Engn, Nanchang 330063, Peoples R China
[2] Shanghai Univ, Sch Environm & Chem Engn, 99 Shangda Rd, Shanghai 200444, Peoples R China
[3] Huzhou Coll, Sch Intelligent Mfg, Huzhou 313000, Peoples R China
[4] Liaocheng Univ, Sch Chem & Chem Engn, Liaocheng 252059, Peoples R China
关键词
Non-precious metals; Catalytic materials; Oxygen evolution reaction; Electrocatalyst; Mo-CoFe LDH/NF; HYDROGEN-PRODUCTION; BIFUNCTIONAL ELECTROCATALYST; NATURAL-GAS; WATER; HETEROSTRUCTURE; EXPLORATION; NANOARRAYS; NANOSHEETS; MECHANISM; OXIDATION;
D O I
10.1016/j.electacta.2024.144189
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The study of non-precious metals to prepare catalytic materials with high performance and excellent stability is an important part of improving hydrogen production by electrolysis of water. In this work, we report on the preparation of direct composite Mo-CoFe LDH/NF as the working electrode of oxygen evolution reaction (OER) using nickel foam as the substrate via one-step hydrothermal method. The direct growth in situ ensured the close contact between LDH and NF substrate, thereby reducing the charge transfer resistance and making the electrode have high electrocatalytic performance. At the current density of 10 mA.cm(-2), the oxygen evolution overpotential of the Mo-CoFe LDH/NF catalytic material was 252 mV, the Tafel slope was 22.07 mV/dec, and the material could be maintained in alkaline solution for 10 h, showing good stability. Therefore, this work proposed new ideas for the design and fabrication of low-cost and efficient electrocatalyst materials.
引用
收藏
页数:7
相关论文
共 46 条
[1]   Characterization and Analysis of Porosity and Pore Structures [J].
Anovitz, Lawrence M. ;
Cole, David R. .
PORE-SCALE GEOCHEMICAL PROCESSES, 2015, 80 :61-+
[2]   Hydrogen production from natural gas and biomethane with carbon capture and storage - A techno-environmental analysis [J].
Antonini, Cristina ;
Treyer, Karin ;
Streb, Anne ;
van der Spek, Mijndert ;
Bauer, Christian ;
Mazzotti, Marco .
SUSTAINABLE ENERGY & FUELS, 2020, 4 (06) :2967-2986
[3]   Biorenewable hydrogen production through biomass gasification: A review and future prospects [J].
Cao, Leichang ;
Yu, Iris K. M. ;
Xiong, Xinni ;
Tsang, Daniel C. W. ;
Zhang, Shicheng ;
Clark, James H. ;
Hu, Changwei ;
Ng, Yun Hau ;
Shang, Jin ;
Ok, Yong Sik .
ENVIRONMENTAL RESEARCH, 2020, 186
[4]   CoFe-LDH nanowire arrays on graphite felt: A high-performance oxygen evolution electrocatalyst in alkaline media [J].
Deng, Biao ;
Liang, Jie ;
Yue, Luchao ;
Li, Tingshuai ;
Liu, Qian ;
Liu, Yang ;
Gao, Shuyan ;
Alshehri, Abdulmohsen Ali ;
Alzahrani, Khalid Ahmed ;
Luo, Yonglan ;
Sun, Xuping .
CHINESE CHEMICAL LETTERS, 2022, 33 (02) :890-892
[5]   Activation of peroxymonosulfate by CoFeNi layered double hydroxide/graphene oxide (LDH/GO) for the degradation of gatifloxacin [J].
Deng, Jia ;
Xiao, Liwen ;
Yuan, Shoujun ;
Wang, Wei ;
Zhan, Xinmin ;
Hu, Zhen-Hu .
SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 255
[6]   Mixed iron oxides as Fenton catalysts for gallic acid removal from aqueous solutions [J].
Fontecha-Camara, Maria A. ;
Moreno-Castilla, Carlos ;
Victoria Lopez-Ramon, Maria ;
Alvarez, Miguel A. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2016, 196 :207-215
[7]   Activity and Stability of Electrochemically and Thermally Treated Iridium for the Oxygen Evolution Reaction [J].
Geiger, Simon ;
Kasian, Olga ;
Shrestha, Buddha R. ;
Mingers, Andrea M. ;
Mayrhofer, Karl J. J. ;
Cherevko, Serhiy .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (11) :F3132-F3138
[8]   Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting [J].
Gholipour, Mohammad Reza ;
Cao-Thang Dinh ;
Beland, Francois ;
Trong-On Do .
NANOSCALE, 2015, 7 (18) :8187-8208
[9]   A review of hydrogen production using coal, biomass and other solid fuels [J].
Gnanapragasam, N. V. ;
Rosen, M. A. .
BIOFUELS-UK, 2017, 8 (06) :725-745
[10]   Hollow Mo-doped CoP nanoarrays for efficient overall water splitting [J].
Guan, Cao ;
Xiao, Wen ;
Wu, Haijun ;
Liu, Ximeng ;
Zang, Wenjie ;
Zhang, Hong ;
Ding, Jun ;
Feng, Yuan Ping ;
Pennycook, Stephen J. ;
Wang, John .
NANO ENERGY, 2018, 48 :73-80