Large nonlinear optical absorption and refraction of β-In2Se3 thin film from above to below bandgap excitation

被引:2
作者
Wu, Dan [1 ,2 ,3 ]
Dong, Wen [1 ,2 ,3 ]
Ge, Yanqing [1 ,2 ,3 ]
Cao, Xueqin [1 ,2 ,3 ]
Shi, Mingjian [1 ,2 ,3 ]
Li, Erkang [1 ,2 ,3 ]
Ma, Nan [1 ,2 ,3 ]
Zhou, Yixuan [1 ,2 ,3 ]
Huang, Yuanyuan [1 ,2 ,3 ]
Lu, Chunhui [1 ,2 ,3 ]
Xu, Xinlong [1 ,2 ,3 ]
机构
[1] Northwest Univ, State Key Lab Photoelect Technol & Funct Mat, Xian 710069, Peoples R China
[2] Northwest Univ, Lab Photon Technol Western China Energy, Xian 710069, Peoples R China
[3] Northwest Univ, Inst Photon & Photon Technol, Sch Phys, Xian 710069, Peoples R China
基金
中国国家自然科学基金;
关键词
saturable absorption; two-photon absorption; beta-In2Se3; two dimensional materials; self-defocusing; SATURABLE ABSORPTION; 2-PHOTON ABSORPTION; SATURATION; HETEROSTRUCTURE; GROWTH; LAYER;
D O I
10.35848/1882-0786/ad4a1d
中图分类号
O59 [应用物理学];
学科分类号
摘要
Nonlinear optical materials, especially two-dimensional materials, are anticipated to reveal broadband optical nonlinearity for future miniaturized photonic applications. Herein, we report a physical vapor deposition method to produce beta-In2Se3 thin film and investigate the broadband nonlinear absorption (beta) and refraction (n(2)) characteristics. The beta-In2Se3 semiconductor shows an excellent optical nonlinearity with large beta in 10(2) cm GW(-1) scale and n(2) in 10(-12) cm(2) W-1 scale from visible to NIR wavelengths, which are superior to those of metal carbides and nitrides (MXenes) and metal-organic frameworks. This excellent optical nonlinearity makes beta-In2Se3 a promising candidate for advanced nanophotonic devices and beyond.
引用
收藏
页数:6
相关论文
共 29 条
[21]   Saturable Absorption in 2D Nanomaterials and Related Photonic Devices [J].
Wang, Gaozhong ;
Baker-Murray, Aidan A. ;
Blau, Werner J. .
LASER & PHOTONICS REVIEWS, 2019, 13 (07)
[22]   Graphene/α-In2Se3 heterostructure for ultrafast nonlinear optical applications [J].
Wang, Lizhen ;
Li, Jialin ;
Cui, Yudong ;
Li, Yujie ;
Zhang, Duoduo ;
Ma, Yaoguang ;
Zhu, Haiming ;
Tan, Dezhi ;
Liu, Xueming ;
Wang, Pan ;
Guo, Xin ;
Li, Linjun ;
Tong, Limin .
OPTICAL MATERIALS EXPRESS, 2020, 10 (11) :2723-2729
[23]   Niobium Carbide MXenes with Broad-Band Nonlinear Optical Response and Ultrafast Carrier Dynamics [J].
Wang, Yiduo ;
Wang, Yingwei ;
Chen, Keqiang ;
Qi, Kun ;
Xue, Tianyu ;
Zhang, Han ;
He, Jun ;
Xiao, Si .
ACS NANO, 2020, 14 (08) :10492-10502
[24]   α-In2Se3 wideband optical modulator for pulsed fiber lasers [J].
Yan, Peiguang ;
Jiang, Zike ;
Chen, Hao ;
Yin, Jinde ;
Lai, Jintao ;
Wang, Jinzhang ;
He, Tingchao ;
Yang, Junbo .
OPTICS LETTERS, 2018, 43 (18) :4417-4420
[25]   Modeling of Nonlinear Absorption of 5,10-A2B2 Porphyrins in the Nanosecond Regime [J].
Zawadzka, Monika ;
Wang, Jun ;
Blau, Werner J. ;
Senge, Mathias O. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2013, 117 (01) :15-26
[26]   Slow and fast absorption saturation of black phosphorus: experiment and modelling [J].
Zhang, Saifeng ;
Li, Yuanxin ;
Zhang, Xiaoyan ;
Dong, Ningning ;
Wang, Kangpeng ;
Hanlon, Damien ;
Coleman, Jonathan N. ;
Zhang, Long ;
Wang, Jun .
NANOSCALE, 2016, 8 (39) :17374-17382
[27]   Direct Observation of Degenerate Two-Photon Absorption and Its Saturation in WS2 and MoS2 Mono layer and Few-Layer Films [J].
Zhang, Saifeng ;
Dong, Ningning ;
McEvoy, Niall ;
O'Brien, Maria ;
Winters, Sinead ;
Berner, Nina C. ;
Yim, Chanyoung ;
Li, Yuanxin ;
Zhang, Xiaoyan ;
Chen, Zhanghai ;
Zhang, Long ;
Duesberg, Georg S. ;
Wang, Jun .
ACS NANO, 2015, 9 (07) :7142-7150
[28]   A Highly Sensitive CRISPR-Empowered Surface Plasmon Resonance Sensor for Diagnosis of Inherited Diseases with Femtomolar-Level Real-Time Quantification [J].
Zheng, Fei ;
Chen, Zhi ;
Li, Jingfeng ;
Wu, Rui ;
Zhang, Bin ;
Nie, Guohui ;
Xie, Zhongjian ;
Zhang, Han .
ADVANCED SCIENCE, 2022, 9 (14)
[29]   Self-Assembly High-Performance UV-vis-NIR Broadband β-In2Se3/Si Photodetector Array for Weak Signal Detection [J].
Zheng, Zhaoqiang ;
Yao, Jiandong ;
Wang, Bing ;
Yang, Yibin ;
Yang, Guowei ;
Li, Jingbo .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (50) :43830-43837