Classification of mango disease using ensemble convolutional neural network

被引:3
|
作者
Bezabh, Yohannes Agegnehu [1 ,4 ]
Ayalew, Aleka Melese [1 ]
Abuhayi, Biniyam Mulugeta [2 ]
Demlie, Tensay Nigussie [3 ]
Awoke, Eshete Ayenew [2 ]
Mengistu, Taye Endeshaw [3 ]
机构
[1] Univ Gondar, Dept Informat Technol, Gondar, Ethiopia
[2] Univ Gondar, Gondar, Ethiopia
[3] Jigjiga Univ, Dept Informat Technol, Jigjiga, Ethiopia
[4] Univ Gondar, Informat Tecnol, Merawi, Ethiopia
来源
关键词
Classification mango disease; Digital imaging; Convolutional neural network model;
D O I
10.1016/j.atech.2024.100476
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Mango is a highly significant fruit crop that thrives in a variety of agro-ecologies around the world. Mangoes are rich in vitamins and minerals. However, its yield is currently severely constrained due to disease and pest infestations. Thus, in order to improve mango fruit quality and productivity, illnesses and insect pests must be detected early on. In this study, we conceived and constructed a mango leaf disease detection mechanism utilizing an ensemble convolutional neural network approach. Healthy and diseased mango leaf images were manually obtained from main producing locations in Amhara Region for Merawi fruit and vegetable research identification. To improve the datasets, several pre-processing procedures (such as image resizing, noise reduction, and image augmentation) were used. To improve classification performance and meet the study 's purpose, various segmentation approaches such as k means and Mask R-CNN were applied. Furthermore, following pre-processing and segmentation, features of mango leaf images were retrieved using CNN to obtain important features. The classification model was then constructed using fully-connected layer classifiers on the retrieved features of mango leaf images. The ensemble proposed GoogLeNet and VGG16 based CNN model in the study encompasses various operations, including dataset collection, image preprocessing, noise removal, segmentation, data augmentation, feature extraction, and classification. Upon testing, the model demonstrated impressive performance with 99.87 % training classification accuracy, 99.72 % validation accuracy, and 99.21 % testing accuracy. This indicates the effectiveness of the ensemble approach in achieving high accuracy in image classification tasks.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Classification of microcalcification clusters in digital breast tomosynthesis using ensemble convolutional neural network
    Xiao, Bingbing
    Sun, Haotian
    Meng, You
    Peng, Yunsong
    Yang, Xiaodong
    Chen, Shuangqing
    Yan, Zhuangzhi
    Zheng, Jian
    BIOMEDICAL ENGINEERING ONLINE, 2021, 20 (01)
  • [22] Macular OCT Classification Using a Multi-Scale Convolutional Neural Network Ensemble
    Rasti, Reza
    Rabbani, Hossein
    Mehridehnavi, Alireza
    Hajizadeh, Fedra
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (04) : 1024 - 1034
  • [23] Application of Ensemble Network Architecture Based on Convolutional Neural Network in Image Classification
    Yu, Zhuocheng
    Zhang, Zhiqiang
    Li, Kehan
    Wang, Le
    2021 2ND INTERNATIONAL CONFERENCE ON BIG DATA & ARTIFICIAL INTELLIGENCE & SOFTWARE ENGINEERING (ICBASE 2021), 2021, : 452 - 455
  • [24] Multimodal Lung Disease Classification using Deep Convolutional Neural Network
    Tariq, Zeenat
    Shah, Sayed Khushal
    Lee, Yugyung
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 2530 - 2537
  • [25] Banana Plant Disease Classification Using Hybrid Convolutional Neural Network
    Narayanan, K. Lakshmi
    Krishnan, R. Santhana
    Robinson, Y. Harold
    Julie, E. Golden
    Vimal, S.
    Saravanan, V.
    Kaliappan, M.
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [26] Detection and classification of gastrointestinal disease using convolutional neural network and SVM
    Haile, Melaku Bitew
    Salau, Ayodeji Olalekan
    Enyew, Belay
    Belay, Abebech Jenber
    COGENT ENGINEERING, 2022, 9 (01):
  • [27] Paddy Plant Disease Classification and Prediction Using Convolutional Neural Network
    Sagarika, G. K.
    Prasad, Krishna S. J.
    Kumar, Mohana S.
    2020 5TH IEEE INTERNATIONAL CONFERENCE ON RECENT TRENDS ON ELECTRONICS, INFORMATION, COMMUNICATION & TECHNOLOGY (RTEICT-2020), 2020, : 208 - 214
  • [28] Plant Disease Identification and Classification Using Convolutional Neural Network and SVM
    Kibriya, Hareem
    Abdullah, Iram
    Nasrullah, Amber
    2021 INTERNATIONAL CONFERENCE ON FRONTIERS OF INFORMATION TECHNOLOGY (FIT 2021), 2021, : 264 - 268
  • [29] Detection and Classification of Tomato Crop Disease Using Convolutional Neural Network
    Sakkarvarthi, Gnanavel
    Sathianesan, Godfrey Winster
    Murugan, Vetri Selvan
    Reddy, Avulapalli Jayaram
    Jayagopal, Prabhu
    Elsisi, Mahmoud
    ELECTRONICS, 2022, 11 (21)
  • [30] Water Classification Using Convolutional Neural Network
    Asghar, Saira
    Gilanie, Ghulam
    Saddique, Mubbashar
    Ullah, Hafeez
    Mohamed, Heba G.
    Abbasi, Irshad Ahmed
    Abbas, Mohamed
    IEEE ACCESS, 2023, 11 : 78601 - 78612