An extended finite element method for the Nernst-Planck-Poisson equations

被引:3
作者
Kumar, Pawan [1 ]
Swaminathan, Narasimhan [1 ]
Natarajan, Sundararajan [1 ]
机构
[1] Indian Inst Technol Madras, Dept Mech Engn, Chennai 600036, India
关键词
eXtended finite element method; Nernst -Planck -Poisson equations; Mixed ionic -electronic -conductor; Steep gradient; ION FLOW-THROUGH; NUMERICAL-SOLUTION; PERTURBATION; SYSTEMS; STABILITY; EXISTENCE;
D O I
10.1016/j.ssi.2024.116531
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Nernst-Planck-Poisson (NPP) system of equations is used to study the ion diffusion mechanism in materials, commonly used in storage batteries and solid oxide fuel cells. In particular, NPP equations are used to predict the concentration of charged defects and electric potential. Depending on the size of the computational domain, the distributions exhibit steep gradients near the boundaries. The traditional finite element method, when employed, requires extremely refined mesh to capture the steep gradient as they employ simple polynomials. To alleviate the mesh dependence, in this work, we propose to augment the traditional finite element approximation space with a suitable ansatz to capture the steep gradient within the framework of the extended finite element method. The robustness and the accuracy of the proposed framework is demonstrated by comparing it with an overkill finite element solution.
引用
收藏
页数:11
相关论文
共 54 条
[1]   Asymptotic Expansions of I-V Relations via a Poisson-Nernst-Planck System [J].
Abaid, Nicole ;
Eisenberg, Robert S. ;
Liu, Weishi .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2008, 7 (04) :1507-1526
[2]   Stable 3D XFEM/vector level sets for non-planar 3D crack propagation and comparison of enrichment schemes [J].
Agathos, Konstantinos ;
Ventura, Giulio ;
Chatzi, Eleni ;
Bordas, Stephane P. A. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2018, 113 (02) :252-276
[3]  
Babuska I, 1997, INT J NUMER METH ENG, V40, P727, DOI 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO
[4]  
2-N
[5]   Ion flow through narrow membrane channels: part II [J].
Barcilon, Victor ;
Chen, D.-P. ;
Eisenberg, R.S. .
SIAM Journal on Applied Mathematics, 1992, 52 (05) :1405-1425
[6]   Qualitative properties of steady-state Poisson-Nernst-Planck systems: Perturbation and simulation study [J].
Barcilon, V ;
Chen, DP ;
Eisenberg, RS ;
Jerome, JW .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1997, 57 (03) :631-648
[7]  
Belytschko T, 1999, INT J NUMER METH ENG, V45, P601, DOI 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO
[8]  
2-S
[9]   Poisson-Nernst-Planck Models of Nonequilibrium Ion Electrodiffusion through a Protegrin Transmembrane Pore [J].
Bolintineanu, Dan S. ;
Sayyed-Ahmad, Abdallah ;
Davis, H. Ted ;
Kaznessis, Yiannis N. .
PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (01)
[10]  
Bordas S.P., 2023, Partition of Unity Methods, P67